| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjinfi.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
disjinfi.d |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
| 3 |
|
disjinfi.c |
⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
| 4 |
|
inss2 |
⊢ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ⊆ 𝐶 |
| 5 |
|
ssfi |
⊢ ( ( 𝐶 ∈ Fin ∧ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ⊆ 𝐶 ) → ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ∈ Fin ) |
| 6 |
3 4 5
|
sylancl |
⊢ ( 𝜑 → ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ∈ Fin ) |
| 7 |
4
|
a1i |
⊢ ( 𝜑 → ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ⊆ 𝐶 ) |
| 8 |
3 7
|
ssexd |
⊢ ( 𝜑 → ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ∈ V ) |
| 9 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) → 𝑦 ∈ ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 10 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ∈ 𝑤 ) |
| 11 |
10
|
biimpi |
⊢ ( 𝑦 ∈ ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ∈ 𝑤 ) |
| 12 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 13 |
12
|
elrnmpt |
⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) ) |
| 14 |
13
|
elv |
⊢ ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) |
| 15 |
14
|
biimpi |
⊢ ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ 𝑦 ∈ 𝑤 ) → ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) |
| 17 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 18 |
17
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 19 |
18
|
nfcri |
⊢ Ⅎ 𝑥 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝑤 |
| 21 |
19 20
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ 𝑦 ∈ 𝑤 ) |
| 22 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑤 = 𝐵 ) → 𝑦 ∈ 𝑤 ) |
| 23 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑤 = 𝐵 ) → 𝑤 = 𝐵 ) |
| 24 |
22 23
|
eleqtrd |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑤 = 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 25 |
24
|
ex |
⊢ ( 𝑦 ∈ 𝑤 → ( 𝑤 = 𝐵 → 𝑦 ∈ 𝐵 ) ) |
| 26 |
25
|
a1d |
⊢ ( 𝑦 ∈ 𝑤 → ( 𝑥 ∈ 𝐴 → ( 𝑤 = 𝐵 → 𝑦 ∈ 𝐵 ) ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ 𝑦 ∈ 𝑤 ) → ( 𝑥 ∈ 𝐴 → ( 𝑤 = 𝐵 → 𝑦 ∈ 𝐵 ) ) ) |
| 28 |
21 27
|
reximdai |
⊢ ( ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ 𝑦 ∈ 𝑤 ) → ( ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
| 29 |
16 28
|
mpd |
⊢ ( ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ 𝑦 ∈ 𝑤 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 30 |
29
|
ex |
⊢ ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑦 ∈ 𝑤 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
| 31 |
30
|
a1i |
⊢ ( 𝑦 ∈ ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑦 ∈ 𝑤 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) ) |
| 32 |
31
|
rexlimdv |
⊢ ( 𝑦 ∈ ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ∈ 𝑤 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
| 33 |
11 32
|
mpd |
⊢ ( 𝑦 ∈ ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 34 |
9 33
|
syl |
⊢ ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 36 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 37 |
18
|
nfuni |
⊢ Ⅎ 𝑥 ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 38 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
| 39 |
37 38
|
nfin |
⊢ Ⅎ 𝑥 ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) |
| 40 |
39
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) |
| 41 |
36 40
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) |
| 42 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) |
| 43 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) → 𝑦 ∈ 𝐶 ) |
| 44 |
|
simp2 |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 45 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 46 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐶 ) |
| 47 |
45 46
|
elind |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) |
| 48 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) |
| 49 |
44 47 48
|
3imp3i2an |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) |
| 50 |
49
|
3exp |
⊢ ( 𝑦 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 51 |
43 50
|
syl |
⊢ ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 53 |
41 42 52
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 54 |
35 53
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) |
| 55 |
|
disjors |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 56 |
2 55
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 57 |
|
nfv |
⊢ Ⅎ 𝑧 ∀ 𝑤 ∈ 𝐴 ( 𝑥 = 𝑤 ∨ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
| 58 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 59 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 = 𝑤 |
| 60 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 61 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
| 62 |
61
|
nfcsb1 |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
| 63 |
60 62
|
nfin |
⊢ Ⅎ 𝑥 ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 64 |
63
|
nfeq1 |
⊢ Ⅎ 𝑥 ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ |
| 65 |
59 64
|
nfor |
⊢ Ⅎ 𝑥 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
| 66 |
58 65
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
| 67 |
|
equequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) |
| 68 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 69 |
68
|
ineq1d |
⊢ ( 𝑥 = 𝑧 → ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) |
| 70 |
69
|
eqeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 71 |
67 70
|
orbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 = 𝑤 ∨ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 72 |
71
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑤 ∈ 𝐴 ( 𝑥 = 𝑤 ∨ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 73 |
57 66 72
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑥 = 𝑤 ∨ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 74 |
56 73
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑥 = 𝑤 ∨ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 75 |
74
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑤 ∈ 𝐴 ( 𝑥 = 𝑤 ∨ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 76 |
|
rspa |
⊢ ( ( ∀ 𝑤 ∈ 𝐴 ( 𝑥 = 𝑤 ∨ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 = 𝑤 ∨ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 77 |
76
|
orcomd |
⊢ ( ( ∀ 𝑤 ∈ 𝐴 ( 𝑥 = 𝑤 ∨ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑥 = 𝑤 ) ) |
| 78 |
75 77
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑥 = 𝑤 ) ) |
| 79 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) → 𝑦 ∈ 𝐵 ) |
| 80 |
|
sbsbc |
⊢ ( [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) |
| 81 |
|
sbcel2 |
⊢ ( [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ⦋ 𝑤 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) ) |
| 82 |
|
csbin |
⊢ ⦋ 𝑤 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
| 83 |
82
|
eleq2i |
⊢ ( 𝑦 ∈ ⦋ 𝑤 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) ) |
| 84 |
80 81 83
|
3bitri |
⊢ ( [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) ) |
| 85 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) → 𝑦 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 86 |
84 85
|
sylbi |
⊢ ( [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) → 𝑦 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 87 |
|
inelcm |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) → ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ≠ ∅ ) |
| 88 |
87
|
neneqd |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) → ¬ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
| 89 |
79 86 88
|
syl2an |
⊢ ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → ¬ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
| 90 |
|
pm2.53 |
⊢ ( ( ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑥 = 𝑤 ) → ( ¬ ( 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ → 𝑥 = 𝑤 ) ) |
| 91 |
78 89 90
|
syl2im |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑤 ) ) |
| 92 |
91
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑤 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑤 ) ) |
| 93 |
92
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑤 ) ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑤 ) ) |
| 95 |
|
reu2 |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑤 ) ) ) |
| 96 |
54 94 95
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) → ∃! 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) |
| 97 |
|
riotacl2 |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) → ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) } ) |
| 98 |
|
nfriota1 |
⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) |
| 99 |
98
|
nfcsb1 |
⊢ Ⅎ 𝑥 ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 |
| 100 |
99 38
|
nfin |
⊢ Ⅎ 𝑥 ( ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 101 |
100
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ ( ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 102 |
|
csbeq1a |
⊢ ( 𝑥 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝐵 = ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 ) |
| 103 |
102
|
ineq1d |
⊢ ( 𝑥 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → ( 𝐵 ∩ 𝐶 ) = ( ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 104 |
103
|
eleq2d |
⊢ ( 𝑥 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ) |
| 105 |
98 58 101 104
|
elrabf |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) } ↔ ( ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ 𝐴 ∧ 𝑦 ∈ ( ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ) |
| 106 |
105
|
simplbi |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) } → ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ 𝐴 ) |
| 107 |
105
|
simprbi |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) } → 𝑦 ∈ ( ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 108 |
107
|
ne0d |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) } → ( ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ≠ ∅ ) |
| 109 |
|
nfcv |
⊢ Ⅎ 𝑥 ∅ |
| 110 |
100 109
|
nfne |
⊢ Ⅎ 𝑥 ( ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ≠ ∅ |
| 111 |
103
|
neeq1d |
⊢ ( 𝑥 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → ( ( 𝐵 ∩ 𝐶 ) ≠ ∅ ↔ ( ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ≠ ∅ ) ) |
| 112 |
98 58 110 111
|
elrabf |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ↔ ( ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ 𝐴 ∧ ( ⦋ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ≠ ∅ ) ) |
| 113 |
106 108 112
|
sylanbrc |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) } → ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ) |
| 114 |
96 97 113
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) → ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ) |
| 115 |
114
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ) |
| 116 |
62 38
|
nfin |
⊢ Ⅎ 𝑥 ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 117 |
116 109
|
nfne |
⊢ Ⅎ 𝑥 ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ≠ ∅ |
| 118 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 119 |
118
|
ineq1d |
⊢ ( 𝑥 = 𝑤 → ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 120 |
119
|
neeq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐵 ∩ 𝐶 ) ≠ ∅ ↔ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ≠ ∅ ) ) |
| 121 |
61 58 117 120
|
elrabf |
⊢ ( 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ↔ ( 𝑤 ∈ 𝐴 ∧ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ≠ ∅ ) ) |
| 122 |
121
|
simprbi |
⊢ ( 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } → ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ≠ ∅ ) |
| 123 |
|
n0 |
⊢ ( ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 124 |
122 123
|
sylib |
⊢ ( 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } → ∃ 𝑦 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ) → ∃ 𝑦 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 126 |
121
|
simplbi |
⊢ ( 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } → 𝑤 ∈ 𝐴 ) |
| 127 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) → 𝑦 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 128 |
127
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑦 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 129 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 ∈ 𝐴 ) |
| 130 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) |
| 131 |
62
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∈ 𝑉 |
| 132 |
130 131
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
| 133 |
|
eleq1w |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
| 134 |
133
|
anbi2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ) ) |
| 135 |
118
|
eleq1d |
⊢ ( 𝑥 = 𝑤 → ( 𝐵 ∈ 𝑉 ↔ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) ) |
| 136 |
134 135
|
imbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) ↔ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) ) ) |
| 137 |
132 136 1
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
| 138 |
137
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
| 139 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 140 |
139
|
elrnmpt1 |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) → ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∈ ran ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) |
| 141 |
129 138 140
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∈ ran ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) |
| 142 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐵 |
| 143 |
118
|
equcoms |
⊢ ( 𝑤 = 𝑥 → 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 144 |
143
|
eqcomd |
⊢ ( 𝑤 = 𝑥 → ⦋ 𝑤 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
| 145 |
62 142 144
|
cbvmpt |
⊢ ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 146 |
145
|
rneqi |
⊢ ran ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 147 |
141 146
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 148 |
|
elunii |
⊢ ( ( 𝑦 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∧ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → 𝑦 ∈ ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 149 |
128 147 148
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑦 ∈ ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 150 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) → 𝑦 ∈ 𝐶 ) |
| 151 |
150
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) |
| 152 |
149 151
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) |
| 153 |
|
nfv |
⊢ Ⅎ 𝑤 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) |
| 154 |
116
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 155 |
119
|
eleq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ) |
| 156 |
153 154 155
|
cbvriotaw |
⊢ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) = ( ℩ 𝑤 ∈ 𝐴 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 157 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 158 |
|
rspe |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → ∃ 𝑤 ∈ 𝐴 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 159 |
158
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → ∃ 𝑤 ∈ 𝐴 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 160 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝜑 ) |
| 161 |
|
sbequ |
⊢ ( 𝑤 = 𝑧 → ( [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ [ 𝑧 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 162 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ [ 𝑧 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) |
| 163 |
162
|
a1i |
⊢ ( 𝑤 = 𝑧 → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ [ 𝑧 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 164 |
|
sbcel2 |
⊢ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) ) |
| 165 |
|
csbin |
⊢ ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) |
| 166 |
|
csbconstg |
⊢ ( 𝑧 ∈ V → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝐶 ) |
| 167 |
166
|
elv |
⊢ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝐶 |
| 168 |
167
|
ineq2i |
⊢ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 169 |
165 168
|
eqtri |
⊢ ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 170 |
169
|
eleq2i |
⊢ ( 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 171 |
164 170
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 172 |
171
|
a1i |
⊢ ( 𝑤 = 𝑧 → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ) |
| 173 |
161 163 172
|
3bitrd |
⊢ ( 𝑤 = 𝑧 → ( [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ) |
| 174 |
173
|
anbi2d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ) ) |
| 175 |
|
equequ2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑧 ) ) |
| 176 |
174 175
|
imbi12d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑤 ) ↔ ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑧 ) ) ) |
| 177 |
176
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑤 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑧 ) ) |
| 178 |
177
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑧 ) ) |
| 179 |
|
nfv |
⊢ Ⅎ 𝑤 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑧 ) |
| 180 |
60 38
|
nfin |
⊢ Ⅎ 𝑥 ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 181 |
180
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 182 |
154 181
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 183 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 = 𝑧 |
| 184 |
182 183
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) |
| 185 |
58 184
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) |
| 186 |
155
|
anbi1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ) ) |
| 187 |
|
equequ1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = 𝑧 ↔ 𝑤 = 𝑧 ) ) |
| 188 |
186 187
|
imbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑧 ) ↔ ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) ) ) |
| 189 |
188
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) ) ) |
| 190 |
179 185 189
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) ) |
| 191 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑤 ] 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ↔ [ 𝑧 / 𝑤 ] 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 192 |
|
sbcel2 |
⊢ ( [ 𝑧 / 𝑤 ] 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ⦋ 𝑧 / 𝑤 ⦌ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 193 |
|
csbin |
⊢ ⦋ 𝑧 / 𝑤 ⦌ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑧 / 𝑤 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑤 ⦌ 𝐶 ) |
| 194 |
|
csbcow |
⊢ ⦋ 𝑧 / 𝑤 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 195 |
|
csbconstg |
⊢ ( 𝑧 ∈ V → ⦋ 𝑧 / 𝑤 ⦌ 𝐶 = 𝐶 ) |
| 196 |
195
|
elv |
⊢ ⦋ 𝑧 / 𝑤 ⦌ 𝐶 = 𝐶 |
| 197 |
194 196
|
ineq12i |
⊢ ( ⦋ 𝑧 / 𝑤 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑤 ⦌ 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 198 |
193 197
|
eqtri |
⊢ ⦋ 𝑧 / 𝑤 ⦌ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 199 |
198
|
eleq2i |
⊢ ( 𝑦 ∈ ⦋ 𝑧 / 𝑤 ⦌ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 200 |
191 192 199
|
3bitrri |
⊢ ( 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ↔ [ 𝑧 / 𝑤 ] 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 201 |
200
|
anbi2i |
⊢ ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ [ 𝑧 / 𝑤 ] 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ) |
| 202 |
201
|
imbi1i |
⊢ ( ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) ↔ ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ [ 𝑧 / 𝑤 ] 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) ) |
| 203 |
202
|
2ralbii |
⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ 𝑦 ∈ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ [ 𝑧 / 𝑤 ] 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) ) |
| 204 |
178 190 203
|
3bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ∧ [ 𝑤 / 𝑥 ] 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑥 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ [ 𝑧 / 𝑤 ] 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) ) |
| 205 |
94 204
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) → ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ [ 𝑧 / 𝑤 ] 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) ) |
| 206 |
160 152 205
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ [ 𝑧 / 𝑤 ] 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) ) |
| 207 |
|
reu2 |
⊢ ( ∃! 𝑤 ∈ 𝐴 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ↔ ( ∃ 𝑤 ∈ 𝐴 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ∧ [ 𝑧 / 𝑤 ] 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = 𝑧 ) ) ) |
| 208 |
159 206 207
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → ∃! 𝑤 ∈ 𝐴 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 209 |
|
riota1 |
⊢ ( ∃! 𝑤 ∈ 𝐴 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) → ( ( 𝑤 ∈ 𝐴 ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ↔ ( ℩ 𝑤 ∈ 𝐴 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) = 𝑤 ) ) |
| 210 |
208 209
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → ( ( 𝑤 ∈ 𝐴 ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) ↔ ( ℩ 𝑤 ∈ 𝐴 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) = 𝑤 ) ) |
| 211 |
129 157 210
|
mpbi2and |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → ( ℩ 𝑤 ∈ 𝐴 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) = 𝑤 ) |
| 212 |
156 211
|
eqtr2id |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → 𝑤 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 213 |
152 212
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) → ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ∧ 𝑤 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 214 |
213
|
ex |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) → ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ∧ 𝑤 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 215 |
126 214
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ) → ( 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) → ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ∧ 𝑤 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 216 |
215
|
eximdv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ) → ( ∃ 𝑦 𝑦 ∈ ( ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) → ∃ 𝑦 ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ∧ 𝑤 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 217 |
125 216
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ) → ∃ 𝑦 ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ∧ 𝑤 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 218 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) 𝑤 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ∧ 𝑤 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 219 |
217 218
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ) → ∃ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) 𝑤 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 220 |
219
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ∃ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) 𝑤 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 221 |
|
eqid |
⊢ ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ↦ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) = ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ↦ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 222 |
221
|
fompt |
⊢ ( ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ↦ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) : ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) –onto→ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ↔ ( ∀ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ∧ ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ∃ 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) 𝑤 = ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 223 |
115 220 222
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ↦ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) : ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) –onto→ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ) |
| 224 |
|
fodomg |
⊢ ( ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ∈ V → ( ( 𝑦 ∈ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ↦ ( ℩ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) : ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) –onto→ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ≼ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) ) |
| 225 |
8 223 224
|
sylc |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ≼ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) |
| 226 |
|
domfi |
⊢ ( ( ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ∈ Fin ∧ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ≼ ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∩ 𝐶 ) ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ∈ Fin ) |
| 227 |
6 225 226
|
syl2anc |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐶 ) ≠ ∅ } ∈ Fin ) |