| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1degltdim.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1degltdim.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 3 |
|
ply1degltdim.s |
⊢ 𝑆 = ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) |
| 4 |
|
ply1degltdim.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 5 |
|
ply1degltdim.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 6 |
|
ply1degltdim.e |
⊢ 𝐸 = ( 𝑃 ↾s 𝑆 ) |
| 7 |
1 5
|
ply1lvec |
⊢ ( 𝜑 → 𝑃 ∈ LVec ) |
| 8 |
5
|
drngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 9 |
1 2 3 4 8
|
ply1degltlss |
⊢ ( 𝜑 → 𝑆 ∈ ( LSubSp ‘ 𝑃 ) ) |
| 10 |
|
eqid |
⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) |
| 11 |
6 10
|
lsslvec |
⊢ ( ( 𝑃 ∈ LVec ∧ 𝑆 ∈ ( LSubSp ‘ 𝑃 ) ) → 𝐸 ∈ LVec ) |
| 12 |
7 9 11
|
syl2anc |
⊢ ( 𝜑 → 𝐸 ∈ LVec ) |
| 13 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
| 14 |
13
|
cbvmptv |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
| 15 |
1 2 3 4 5 6 14
|
ply1degltdimlem |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( LBasis ‘ 𝐸 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 17 |
2 1 16
|
deg1xrf |
⊢ 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* |
| 18 |
|
ffn |
⊢ ( 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
| 19 |
17 18
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
| 20 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 21 |
20 16
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 22 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 23 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 24 |
20
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 25 |
8 23 24
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 27 |
|
elfzonn0 |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ℕ0 ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
| 29 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
| 30 |
29 1 16
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
| 31 |
8 30
|
syl |
⊢ ( 𝜑 → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
| 33 |
21 22 26 28 32
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 34 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → -∞ ∈ ℝ* ) |
| 36 |
4
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 37 |
36
|
rexrd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ* ) |
| 39 |
2 1 16
|
deg1xrcl |
⊢ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ℝ* ) |
| 40 |
33 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ℝ* ) |
| 41 |
40
|
mnfled |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → -∞ ≤ ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 42 |
27
|
nn0red |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ℝ ) |
| 43 |
42
|
rexrd |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ℝ* ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 ∈ ℝ* ) |
| 45 |
2 1 29 20 22
|
deg1pwle |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ≤ 𝑛 ) |
| 46 |
8 27 45
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ≤ 𝑛 ) |
| 47 |
|
elfzolt2 |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 < 𝑁 ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 < 𝑁 ) |
| 49 |
40 44 38 46 48
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) < 𝑁 ) |
| 50 |
35 38 40 41 49
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( -∞ [,) 𝑁 ) ) |
| 51 |
19 33 50
|
elpreimad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ) |
| 52 |
51 3
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ 𝑆 ) |
| 53 |
16 10
|
lssss |
⊢ ( 𝑆 ∈ ( LSubSp ‘ 𝑃 ) → 𝑆 ⊆ ( Base ‘ 𝑃 ) ) |
| 54 |
6 16
|
ressbas2 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝑃 ) → 𝑆 = ( Base ‘ 𝐸 ) ) |
| 55 |
9 53 54
|
3syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐸 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 = ( Base ‘ 𝐸 ) ) |
| 57 |
52 56
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐸 ) ) |
| 58 |
57 14
|
fmptd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 59 |
58
|
ffnd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) Fn ( 0 ..^ 𝑁 ) ) |
| 60 |
|
hashfn |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) Fn ( 0 ..^ 𝑁 ) → ( ♯ ‘ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
| 61 |
59 60
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
| 62 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ∈ V ) |
| 63 |
57
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐸 ) ) |
| 64 |
|
drngnzr |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |
| 65 |
5 64
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑅 ∈ NzRing ) |
| 67 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
| 68 |
|
elfzonn0 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑁 ) → 𝑖 ∈ ℕ0 ) |
| 69 |
68
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑖 ∈ ℕ0 ) |
| 70 |
1 29 22 66 67 69
|
ply1moneq |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ↔ 𝑛 = 𝑖 ) ) |
| 71 |
70
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) |
| 72 |
71
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ) → ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) |
| 73 |
72
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) |
| 74 |
|
oveq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
| 75 |
14 74
|
f1mpt |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) : ( 0 ..^ 𝑁 ) –1-1→ ( Base ‘ 𝐸 ) ↔ ( ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐸 ) ∧ ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) ) |
| 76 |
63 73 75
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) : ( 0 ..^ 𝑁 ) –1-1→ ( Base ‘ 𝐸 ) ) |
| 77 |
|
hashf1rn |
⊢ ( ( ( 0 ..^ 𝑁 ) ∈ V ∧ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) : ( 0 ..^ 𝑁 ) –1-1→ ( Base ‘ 𝐸 ) ) → ( ♯ ‘ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
| 78 |
62 76 77
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
| 79 |
|
hashfzo0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
| 80 |
4 79
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
| 81 |
61 78 80
|
3eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = 𝑁 ) |
| 82 |
|
hashvnfin |
⊢ ( ( ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( LBasis ‘ 𝐸 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = 𝑁 → ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ Fin ) ) |
| 83 |
82
|
imp |
⊢ ( ( ( ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( LBasis ‘ 𝐸 ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = 𝑁 ) → ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ Fin ) |
| 84 |
15 4 81 83
|
syl21anc |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ Fin ) |
| 85 |
|
eqid |
⊢ ( LBasis ‘ 𝐸 ) = ( LBasis ‘ 𝐸 ) |
| 86 |
85
|
dimvalfi |
⊢ ( ( 𝐸 ∈ LVec ∧ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( LBasis ‘ 𝐸 ) ∧ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ Fin ) → ( dim ‘ 𝐸 ) = ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
| 87 |
12 15 84 86
|
syl3anc |
⊢ ( 𝜑 → ( dim ‘ 𝐸 ) = ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
| 88 |
87 81
|
eqtrd |
⊢ ( 𝜑 → ( dim ‘ 𝐸 ) = 𝑁 ) |