| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1degltlss.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1degltlss.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 3 |
|
ply1degltlss.1 |
⊢ 𝑆 = ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) |
| 4 |
|
ply1degltlss.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 5 |
|
ply1degltlss.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
| 9 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) ) |
| 10 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) ) |
| 11 |
|
eqidd |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) ) |
| 12 |
|
eqidd |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) ) |
| 13 |
|
cnvimass |
⊢ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ⊆ dom 𝐷 |
| 14 |
3 13
|
eqsstri |
⊢ 𝑆 ⊆ dom 𝐷 |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 16 |
2 1 15
|
deg1xrf |
⊢ 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* |
| 17 |
16
|
fdmi |
⊢ dom 𝐷 = ( Base ‘ 𝑃 ) |
| 18 |
14 17
|
sseqtri |
⊢ 𝑆 ⊆ ( Base ‘ 𝑃 ) |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑃 ) ) |
| 20 |
16
|
a1i |
⊢ ( 𝜑 → 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* ) |
| 21 |
20
|
ffnd |
⊢ ( 𝜑 → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
| 22 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 24 |
15 23
|
ring0cl |
⊢ ( 𝑃 ∈ Ring → ( 0g ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 25 |
5 22 24
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 26 |
2 1 23
|
deg1z |
⊢ ( 𝑅 ∈ Ring → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) = -∞ ) |
| 27 |
5 26
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) = -∞ ) |
| 28 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 30 |
4
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 31 |
30
|
rexrd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
| 32 |
29
|
xrleidd |
⊢ ( 𝜑 → -∞ ≤ -∞ ) |
| 33 |
30
|
mnfltd |
⊢ ( 𝜑 → -∞ < 𝑁 ) |
| 34 |
29 31 29 32 33
|
elicod |
⊢ ( 𝜑 → -∞ ∈ ( -∞ [,) 𝑁 ) ) |
| 35 |
27 34
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) ∈ ( -∞ [,) 𝑁 ) ) |
| 36 |
21 25 35
|
elpreimad |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ) |
| 37 |
36 3
|
eleqtrrdi |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ 𝑆 ) |
| 38 |
37
|
ne0d |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 39 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝜑 ) |
| 40 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 41 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 42 |
5 41
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝑃 ∈ LMod ) |
| 44 |
43
|
lmodgrpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝑃 ∈ Grp ) |
| 45 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 46 |
7
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 48 |
45 47
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 49 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝑎 ∈ 𝑆 ) |
| 50 |
18 49
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝑎 ∈ ( Base ‘ 𝑃 ) ) |
| 51 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 52 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 53 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 54 |
15 51 52 53
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ∈ ( Base ‘ 𝑃 ) ) |
| 55 |
43 48 50 54
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ∈ ( Base ‘ 𝑃 ) ) |
| 56 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝑏 ∈ 𝑆 ) |
| 57 |
18 56
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝑏 ∈ ( Base ‘ 𝑃 ) ) |
| 58 |
15 40 44 55 57
|
grpcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ( +g ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
| 59 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 60 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 61 |
30 60
|
resubcld |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ ) |
| 62 |
61
|
rexrd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ* ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑁 − 1 ) ∈ ℝ* ) |
| 64 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* ) |
| 65 |
64 55
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝐷 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ) ∈ ℝ* ) |
| 66 |
64 50
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝐷 ‘ 𝑎 ) ∈ ℝ* ) |
| 67 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 68 |
1 2 59 15 67 52 45 50
|
deg1vscale |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝐷 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ) ≤ ( 𝐷 ‘ 𝑎 ) ) |
| 69 |
1 2 3 4 5 15
|
ply1degltel |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝑆 ↔ ( 𝑎 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐷 ‘ 𝑎 ) ≤ ( 𝑁 − 1 ) ) ) ) |
| 70 |
69
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐷 ‘ 𝑎 ) ≤ ( 𝑁 − 1 ) ) |
| 71 |
49 70
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝐷 ‘ 𝑎 ) ≤ ( 𝑁 − 1 ) ) |
| 72 |
65 66 63 68 71
|
xrletrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝐷 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ) ≤ ( 𝑁 − 1 ) ) |
| 73 |
1 2 3 4 5 15
|
ply1degltel |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑆 ↔ ( 𝑏 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐷 ‘ 𝑏 ) ≤ ( 𝑁 − 1 ) ) ) ) |
| 74 |
73
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑆 ) → ( 𝐷 ‘ 𝑏 ) ≤ ( 𝑁 − 1 ) ) |
| 75 |
56 74
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝐷 ‘ 𝑏 ) ≤ ( 𝑁 − 1 ) ) |
| 76 |
1 2 59 15 40 55 57 63 72 75
|
deg1addle2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝐷 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ( +g ‘ 𝑃 ) 𝑏 ) ) ≤ ( 𝑁 − 1 ) ) |
| 77 |
1 2 3 4 5 15
|
ply1degltel |
⊢ ( 𝜑 → ( ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ( +g ‘ 𝑃 ) 𝑏 ) ∈ 𝑆 ↔ ( ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ( +g ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐷 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ( +g ‘ 𝑃 ) 𝑏 ) ) ≤ ( 𝑁 − 1 ) ) ) ) |
| 78 |
77
|
biimpar |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ( +g ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐷 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ( +g ‘ 𝑃 ) 𝑏 ) ) ≤ ( 𝑁 − 1 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ( +g ‘ 𝑃 ) 𝑏 ) ∈ 𝑆 ) |
| 79 |
39 58 76 78
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ( +g ‘ 𝑃 ) 𝑏 ) ∈ 𝑆 ) |
| 80 |
7 8 9 10 11 12 19 38 79
|
islssd |
⊢ ( 𝜑 → 𝑆 ∈ ( LSubSp ‘ 𝑃 ) ) |