Step |
Hyp |
Ref |
Expression |
1 |
|
deg1addle.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
2 |
|
deg1addle.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
deg1addle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
deg1addle.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
5 |
|
deg1addle.p |
⊢ + = ( +g ‘ 𝑌 ) |
6 |
|
deg1addle.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
deg1addle.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
8 |
|
deg1addle2.l1 |
⊢ ( 𝜑 → 𝐿 ∈ ℝ* ) |
9 |
|
deg1addle2.l2 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ≤ 𝐿 ) |
10 |
|
deg1addle2.l3 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ≤ 𝐿 ) |
11 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Ring ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
13 |
4 5
|
ringacl |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 + 𝐺 ) ∈ 𝐵 ) |
14 |
12 6 7 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 + 𝐺 ) ∈ 𝐵 ) |
15 |
2 1 4
|
deg1xrcl |
⊢ ( ( 𝐹 + 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ∈ ℝ* ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ∈ ℝ* ) |
17 |
2 1 4
|
deg1xrcl |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
18 |
7 17
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
19 |
2 1 4
|
deg1xrcl |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
20 |
6 19
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
21 |
18 20
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ) |
22 |
1 2 3 4 5 6 7
|
deg1addle |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |
23 |
|
xrmaxle |
⊢ ( ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ∧ 𝐿 ∈ ℝ* ) → ( if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ≤ 𝐿 ↔ ( ( 𝐷 ‘ 𝐹 ) ≤ 𝐿 ∧ ( 𝐷 ‘ 𝐺 ) ≤ 𝐿 ) ) ) |
24 |
20 18 8 23
|
syl3anc |
⊢ ( 𝜑 → ( if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ≤ 𝐿 ↔ ( ( 𝐷 ‘ 𝐹 ) ≤ 𝐿 ∧ ( 𝐷 ‘ 𝐺 ) ≤ 𝐿 ) ) ) |
25 |
9 10 24
|
mpbir2and |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ≤ 𝐿 ) |
26 |
16 21 8 22 25
|
xrletrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ 𝐿 ) |