| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1addle.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
deg1addle.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 3 |
|
deg1addle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
deg1addle.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 5 |
|
deg1addle.p |
⊢ + = ( +g ‘ 𝑌 ) |
| 6 |
|
deg1addle.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 7 |
|
deg1addle.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 8 |
|
deg1addle2.l1 |
⊢ ( 𝜑 → 𝐿 ∈ ℝ* ) |
| 9 |
|
deg1addle2.l2 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ≤ 𝐿 ) |
| 10 |
|
deg1addle2.l3 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ≤ 𝐿 ) |
| 11 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Ring ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| 13 |
4 5
|
ringacl |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 + 𝐺 ) ∈ 𝐵 ) |
| 14 |
12 6 7 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 + 𝐺 ) ∈ 𝐵 ) |
| 15 |
2 1 4
|
deg1xrcl |
⊢ ( ( 𝐹 + 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ∈ ℝ* ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ∈ ℝ* ) |
| 17 |
2 1 4
|
deg1xrcl |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
| 18 |
7 17
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
| 19 |
2 1 4
|
deg1xrcl |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
| 20 |
6 19
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
| 21 |
18 20
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ) |
| 22 |
1 2 3 4 5 6 7
|
deg1addle |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |
| 23 |
|
xrmaxle |
⊢ ( ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ∧ 𝐿 ∈ ℝ* ) → ( if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ≤ 𝐿 ↔ ( ( 𝐷 ‘ 𝐹 ) ≤ 𝐿 ∧ ( 𝐷 ‘ 𝐺 ) ≤ 𝐿 ) ) ) |
| 24 |
20 18 8 23
|
syl3anc |
⊢ ( 𝜑 → ( if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ≤ 𝐿 ↔ ( ( 𝐷 ‘ 𝐹 ) ≤ 𝐿 ∧ ( 𝐷 ‘ 𝐺 ) ≤ 𝐿 ) ) ) |
| 25 |
9 10 24
|
mpbir2and |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ≤ 𝐿 ) |
| 26 |
16 21 8 22 25
|
xrletrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ 𝐿 ) |