Metamath Proof Explorer


Theorem deg1addle2

Description: If both factors have degree bounded by L , then the sum of the polynomials also has degree bounded by L . (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1addle.y 𝑌 = ( Poly1𝑅 )
deg1addle.d 𝐷 = ( deg1𝑅 )
deg1addle.r ( 𝜑𝑅 ∈ Ring )
deg1addle.b 𝐵 = ( Base ‘ 𝑌 )
deg1addle.p + = ( +g𝑌 )
deg1addle.f ( 𝜑𝐹𝐵 )
deg1addle.g ( 𝜑𝐺𝐵 )
deg1addle2.l1 ( 𝜑𝐿 ∈ ℝ* )
deg1addle2.l2 ( 𝜑 → ( 𝐷𝐹 ) ≤ 𝐿 )
deg1addle2.l3 ( 𝜑 → ( 𝐷𝐺 ) ≤ 𝐿 )
Assertion deg1addle2 ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ 𝐿 )

Proof

Step Hyp Ref Expression
1 deg1addle.y 𝑌 = ( Poly1𝑅 )
2 deg1addle.d 𝐷 = ( deg1𝑅 )
3 deg1addle.r ( 𝜑𝑅 ∈ Ring )
4 deg1addle.b 𝐵 = ( Base ‘ 𝑌 )
5 deg1addle.p + = ( +g𝑌 )
6 deg1addle.f ( 𝜑𝐹𝐵 )
7 deg1addle.g ( 𝜑𝐺𝐵 )
8 deg1addle2.l1 ( 𝜑𝐿 ∈ ℝ* )
9 deg1addle2.l2 ( 𝜑 → ( 𝐷𝐹 ) ≤ 𝐿 )
10 deg1addle2.l3 ( 𝜑 → ( 𝐷𝐺 ) ≤ 𝐿 )
11 1 ply1ring ( 𝑅 ∈ Ring → 𝑌 ∈ Ring )
12 3 11 syl ( 𝜑𝑌 ∈ Ring )
13 4 5 ringacl ( ( 𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝐹 + 𝐺 ) ∈ 𝐵 )
14 12 6 7 13 syl3anc ( 𝜑 → ( 𝐹 + 𝐺 ) ∈ 𝐵 )
15 2 1 4 deg1xrcl ( ( 𝐹 + 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ∈ ℝ* )
16 14 15 syl ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ∈ ℝ* )
17 2 1 4 deg1xrcl ( 𝐺𝐵 → ( 𝐷𝐺 ) ∈ ℝ* )
18 7 17 syl ( 𝜑 → ( 𝐷𝐺 ) ∈ ℝ* )
19 2 1 4 deg1xrcl ( 𝐹𝐵 → ( 𝐷𝐹 ) ∈ ℝ* )
20 6 19 syl ( 𝜑 → ( 𝐷𝐹 ) ∈ ℝ* )
21 18 20 ifcld ( 𝜑 → if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∈ ℝ* )
22 1 2 3 4 5 6 7 deg1addle ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )
23 xrmaxle ( ( ( 𝐷𝐹 ) ∈ ℝ* ∧ ( 𝐷𝐺 ) ∈ ℝ*𝐿 ∈ ℝ* ) → ( if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ≤ 𝐿 ↔ ( ( 𝐷𝐹 ) ≤ 𝐿 ∧ ( 𝐷𝐺 ) ≤ 𝐿 ) ) )
24 20 18 8 23 syl3anc ( 𝜑 → ( if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ≤ 𝐿 ↔ ( ( 𝐷𝐹 ) ≤ 𝐿 ∧ ( 𝐷𝐺 ) ≤ 𝐿 ) ) )
25 9 10 24 mpbir2and ( 𝜑 → if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ≤ 𝐿 )
26 16 21 8 22 25 xrletrd ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ 𝐿 )