Step |
Hyp |
Ref |
Expression |
1 |
|
deg1addle.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
2 |
|
deg1addle.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
deg1addle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
deg1addle.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
5 |
|
deg1addle.p |
⊢ + = ( +g ‘ 𝑌 ) |
6 |
|
deg1addle.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
deg1addle.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
8 |
|
deg1add.l |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) < ( 𝐷 ‘ 𝐹 ) ) |
9 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Ring ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
11 |
4 5
|
ringacl |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 + 𝐺 ) ∈ 𝐵 ) |
12 |
10 6 7 11
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 + 𝐺 ) ∈ 𝐵 ) |
13 |
2 1 4
|
deg1xrcl |
⊢ ( ( 𝐹 + 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ∈ ℝ* ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ∈ ℝ* ) |
15 |
2 1 4
|
deg1xrcl |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
16 |
6 15
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
17 |
1 2 3 4 5 6 7
|
deg1addle |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |
18 |
2 1 4
|
deg1xrcl |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
19 |
7 18
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
20 |
|
xrltnle |
⊢ ( ( ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) → ( ( 𝐷 ‘ 𝐺 ) < ( 𝐷 ‘ 𝐹 ) ↔ ¬ ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) ) ) |
21 |
19 16 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐺 ) < ( 𝐷 ‘ 𝐹 ) ↔ ¬ ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) ) ) |
22 |
8 21
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) ) |
23 |
22
|
iffalsed |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) = ( 𝐷 ‘ 𝐹 ) ) |
24 |
17 23
|
breqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
25 |
|
nltmnf |
⊢ ( ( 𝐷 ‘ 𝐺 ) ∈ ℝ* → ¬ ( 𝐷 ‘ 𝐺 ) < -∞ ) |
26 |
19 25
|
syl |
⊢ ( 𝜑 → ¬ ( 𝐷 ‘ 𝐺 ) < -∞ ) |
27 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑌 ) ) → ( 𝐷 ‘ 𝐺 ) < ( 𝐷 ‘ 𝐹 ) ) |
28 |
|
fveq2 |
⊢ ( 𝐹 = ( 0g ‘ 𝑌 ) → ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ ( 0g ‘ 𝑌 ) ) ) |
29 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
30 |
2 1 29
|
deg1z |
⊢ ( 𝑅 ∈ Ring → ( 𝐷 ‘ ( 0g ‘ 𝑌 ) ) = -∞ ) |
31 |
3 30
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0g ‘ 𝑌 ) ) = -∞ ) |
32 |
28 31
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑌 ) ) → ( 𝐷 ‘ 𝐹 ) = -∞ ) |
33 |
27 32
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑌 ) ) → ( 𝐷 ‘ 𝐺 ) < -∞ ) |
34 |
33
|
ex |
⊢ ( 𝜑 → ( 𝐹 = ( 0g ‘ 𝑌 ) → ( 𝐷 ‘ 𝐺 ) < -∞ ) ) |
35 |
34
|
necon3bd |
⊢ ( 𝜑 → ( ¬ ( 𝐷 ‘ 𝐺 ) < -∞ → 𝐹 ≠ ( 0g ‘ 𝑌 ) ) ) |
36 |
26 35
|
mpd |
⊢ ( 𝜑 → 𝐹 ≠ ( 0g ‘ 𝑌 ) ) |
37 |
2 1 29 4
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ ( 0g ‘ 𝑌 ) ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
38 |
3 6 36 37
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
39 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
40 |
1 4 5 39
|
coe1addfv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 + 𝐺 ) ) ‘ ( 𝐷 ‘ 𝐹 ) ) = ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ) ) |
41 |
3 6 7 38 40
|
syl31anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐹 + 𝐺 ) ) ‘ ( 𝐷 ‘ 𝐹 ) ) = ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ) ) |
42 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
43 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
44 |
2 1 4 42 43
|
deg1lt |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝐷 ‘ 𝐺 ) < ( 𝐷 ‘ 𝐹 ) ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) |
45 |
7 38 8 44
|
syl3anc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ) = ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
47 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
48 |
3 47
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
49 |
|
eqid |
⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) |
50 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
51 |
49 4 1 50
|
coe1f |
⊢ ( 𝐹 ∈ 𝐵 → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
52 |
6 51
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
53 |
52 38
|
ffvelrnd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝑅 ) ) |
54 |
50 39 42
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ) |
55 |
48 53 54
|
syl2anc |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ) |
56 |
41 46 55
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐹 + 𝐺 ) ) ‘ ( 𝐷 ‘ 𝐹 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ) |
57 |
2 1 29 4 42 49
|
deg1ldg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ ( 0g ‘ 𝑌 ) ) → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
58 |
3 6 36 57
|
syl3anc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
59 |
56 58
|
eqnetrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐹 + 𝐺 ) ) ‘ ( 𝐷 ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
60 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐹 + 𝐺 ) ) = ( coe1 ‘ ( 𝐹 + 𝐺 ) ) |
61 |
2 1 4 42 60
|
deg1ge |
⊢ ( ( ( 𝐹 + 𝐺 ) ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ∧ ( ( coe1 ‘ ( 𝐹 + 𝐺 ) ) ‘ ( 𝐷 ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ) |
62 |
12 38 59 61
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ) |
63 |
14 16 24 62
|
xrletrid |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) = ( 𝐷 ‘ 𝐹 ) ) |