| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1addle.y |
|- Y = ( Poly1 ` R ) |
| 2 |
|
deg1addle.d |
|- D = ( deg1 ` R ) |
| 3 |
|
deg1addle.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
deg1addle.b |
|- B = ( Base ` Y ) |
| 5 |
|
deg1addle.p |
|- .+ = ( +g ` Y ) |
| 6 |
|
deg1addle.f |
|- ( ph -> F e. B ) |
| 7 |
|
deg1addle.g |
|- ( ph -> G e. B ) |
| 8 |
|
deg1add.l |
|- ( ph -> ( D ` G ) < ( D ` F ) ) |
| 9 |
1
|
ply1ring |
|- ( R e. Ring -> Y e. Ring ) |
| 10 |
3 9
|
syl |
|- ( ph -> Y e. Ring ) |
| 11 |
4 5
|
ringacl |
|- ( ( Y e. Ring /\ F e. B /\ G e. B ) -> ( F .+ G ) e. B ) |
| 12 |
10 6 7 11
|
syl3anc |
|- ( ph -> ( F .+ G ) e. B ) |
| 13 |
2 1 4
|
deg1xrcl |
|- ( ( F .+ G ) e. B -> ( D ` ( F .+ G ) ) e. RR* ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( D ` ( F .+ G ) ) e. RR* ) |
| 15 |
2 1 4
|
deg1xrcl |
|- ( F e. B -> ( D ` F ) e. RR* ) |
| 16 |
6 15
|
syl |
|- ( ph -> ( D ` F ) e. RR* ) |
| 17 |
1 2 3 4 5 6 7
|
deg1addle |
|- ( ph -> ( D ` ( F .+ G ) ) <_ if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) ) |
| 18 |
2 1 4
|
deg1xrcl |
|- ( G e. B -> ( D ` G ) e. RR* ) |
| 19 |
7 18
|
syl |
|- ( ph -> ( D ` G ) e. RR* ) |
| 20 |
|
xrltnle |
|- ( ( ( D ` G ) e. RR* /\ ( D ` F ) e. RR* ) -> ( ( D ` G ) < ( D ` F ) <-> -. ( D ` F ) <_ ( D ` G ) ) ) |
| 21 |
19 16 20
|
syl2anc |
|- ( ph -> ( ( D ` G ) < ( D ` F ) <-> -. ( D ` F ) <_ ( D ` G ) ) ) |
| 22 |
8 21
|
mpbid |
|- ( ph -> -. ( D ` F ) <_ ( D ` G ) ) |
| 23 |
22
|
iffalsed |
|- ( ph -> if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) = ( D ` F ) ) |
| 24 |
17 23
|
breqtrd |
|- ( ph -> ( D ` ( F .+ G ) ) <_ ( D ` F ) ) |
| 25 |
|
nltmnf |
|- ( ( D ` G ) e. RR* -> -. ( D ` G ) < -oo ) |
| 26 |
19 25
|
syl |
|- ( ph -> -. ( D ` G ) < -oo ) |
| 27 |
8
|
adantr |
|- ( ( ph /\ F = ( 0g ` Y ) ) -> ( D ` G ) < ( D ` F ) ) |
| 28 |
|
fveq2 |
|- ( F = ( 0g ` Y ) -> ( D ` F ) = ( D ` ( 0g ` Y ) ) ) |
| 29 |
|
eqid |
|- ( 0g ` Y ) = ( 0g ` Y ) |
| 30 |
2 1 29
|
deg1z |
|- ( R e. Ring -> ( D ` ( 0g ` Y ) ) = -oo ) |
| 31 |
3 30
|
syl |
|- ( ph -> ( D ` ( 0g ` Y ) ) = -oo ) |
| 32 |
28 31
|
sylan9eqr |
|- ( ( ph /\ F = ( 0g ` Y ) ) -> ( D ` F ) = -oo ) |
| 33 |
27 32
|
breqtrd |
|- ( ( ph /\ F = ( 0g ` Y ) ) -> ( D ` G ) < -oo ) |
| 34 |
33
|
ex |
|- ( ph -> ( F = ( 0g ` Y ) -> ( D ` G ) < -oo ) ) |
| 35 |
34
|
necon3bd |
|- ( ph -> ( -. ( D ` G ) < -oo -> F =/= ( 0g ` Y ) ) ) |
| 36 |
26 35
|
mpd |
|- ( ph -> F =/= ( 0g ` Y ) ) |
| 37 |
2 1 29 4
|
deg1nn0cl |
|- ( ( R e. Ring /\ F e. B /\ F =/= ( 0g ` Y ) ) -> ( D ` F ) e. NN0 ) |
| 38 |
3 6 36 37
|
syl3anc |
|- ( ph -> ( D ` F ) e. NN0 ) |
| 39 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 40 |
1 4 5 39
|
coe1addfv |
|- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ ( D ` F ) e. NN0 ) -> ( ( coe1 ` ( F .+ G ) ) ` ( D ` F ) ) = ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( ( coe1 ` G ) ` ( D ` F ) ) ) ) |
| 41 |
3 6 7 38 40
|
syl31anc |
|- ( ph -> ( ( coe1 ` ( F .+ G ) ) ` ( D ` F ) ) = ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( ( coe1 ` G ) ` ( D ` F ) ) ) ) |
| 42 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 43 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
| 44 |
2 1 4 42 43
|
deg1lt |
|- ( ( G e. B /\ ( D ` F ) e. NN0 /\ ( D ` G ) < ( D ` F ) ) -> ( ( coe1 ` G ) ` ( D ` F ) ) = ( 0g ` R ) ) |
| 45 |
7 38 8 44
|
syl3anc |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` F ) ) = ( 0g ` R ) ) |
| 46 |
45
|
oveq2d |
|- ( ph -> ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( ( coe1 ` G ) ` ( D ` F ) ) ) = ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( 0g ` R ) ) ) |
| 47 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 48 |
3 47
|
syl |
|- ( ph -> R e. Grp ) |
| 49 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
| 50 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 51 |
49 4 1 50
|
coe1f |
|- ( F e. B -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) |
| 52 |
6 51
|
syl |
|- ( ph -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) |
| 53 |
52 38
|
ffvelcdmd |
|- ( ph -> ( ( coe1 ` F ) ` ( D ` F ) ) e. ( Base ` R ) ) |
| 54 |
50 39 42
|
grprid |
|- ( ( R e. Grp /\ ( ( coe1 ` F ) ` ( D ` F ) ) e. ( Base ` R ) ) -> ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( 0g ` R ) ) = ( ( coe1 ` F ) ` ( D ` F ) ) ) |
| 55 |
48 53 54
|
syl2anc |
|- ( ph -> ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( 0g ` R ) ) = ( ( coe1 ` F ) ` ( D ` F ) ) ) |
| 56 |
41 46 55
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( F .+ G ) ) ` ( D ` F ) ) = ( ( coe1 ` F ) ` ( D ` F ) ) ) |
| 57 |
2 1 29 4 42 49
|
deg1ldg |
|- ( ( R e. Ring /\ F e. B /\ F =/= ( 0g ` Y ) ) -> ( ( coe1 ` F ) ` ( D ` F ) ) =/= ( 0g ` R ) ) |
| 58 |
3 6 36 57
|
syl3anc |
|- ( ph -> ( ( coe1 ` F ) ` ( D ` F ) ) =/= ( 0g ` R ) ) |
| 59 |
56 58
|
eqnetrd |
|- ( ph -> ( ( coe1 ` ( F .+ G ) ) ` ( D ` F ) ) =/= ( 0g ` R ) ) |
| 60 |
|
eqid |
|- ( coe1 ` ( F .+ G ) ) = ( coe1 ` ( F .+ G ) ) |
| 61 |
2 1 4 42 60
|
deg1ge |
|- ( ( ( F .+ G ) e. B /\ ( D ` F ) e. NN0 /\ ( ( coe1 ` ( F .+ G ) ) ` ( D ` F ) ) =/= ( 0g ` R ) ) -> ( D ` F ) <_ ( D ` ( F .+ G ) ) ) |
| 62 |
12 38 59 61
|
syl3anc |
|- ( ph -> ( D ` F ) <_ ( D ` ( F .+ G ) ) ) |
| 63 |
14 16 24 62
|
xrletrid |
|- ( ph -> ( D ` ( F .+ G ) ) = ( D ` F ) ) |