Metamath Proof Explorer


Theorem deg1addle2

Description: If both factors have degree bounded by L , then the sum of the polynomials also has degree bounded by L . (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1addle.y Y = Poly 1 R
deg1addle.d D = deg 1 R
deg1addle.r φ R Ring
deg1addle.b B = Base Y
deg1addle.p + ˙ = + Y
deg1addle.f φ F B
deg1addle.g φ G B
deg1addle2.l1 φ L *
deg1addle2.l2 φ D F L
deg1addle2.l3 φ D G L
Assertion deg1addle2 φ D F + ˙ G L

Proof

Step Hyp Ref Expression
1 deg1addle.y Y = Poly 1 R
2 deg1addle.d D = deg 1 R
3 deg1addle.r φ R Ring
4 deg1addle.b B = Base Y
5 deg1addle.p + ˙ = + Y
6 deg1addle.f φ F B
7 deg1addle.g φ G B
8 deg1addle2.l1 φ L *
9 deg1addle2.l2 φ D F L
10 deg1addle2.l3 φ D G L
11 1 ply1ring R Ring Y Ring
12 3 11 syl φ Y Ring
13 4 5 ringacl Y Ring F B G B F + ˙ G B
14 12 6 7 13 syl3anc φ F + ˙ G B
15 2 1 4 deg1xrcl F + ˙ G B D F + ˙ G *
16 14 15 syl φ D F + ˙ G *
17 2 1 4 deg1xrcl G B D G *
18 7 17 syl φ D G *
19 2 1 4 deg1xrcl F B D F *
20 6 19 syl φ D F *
21 18 20 ifcld φ if D F D G D G D F *
22 1 2 3 4 5 6 7 deg1addle φ D F + ˙ G if D F D G D G D F
23 xrmaxle D F * D G * L * if D F D G D G D F L D F L D G L
24 20 18 8 23 syl3anc φ if D F D G D G D F L D F L D G L
25 9 10 24 mpbir2and φ if D F D G D G D F L
26 16 21 8 22 25 xrletrd φ D F + ˙ G L