Metamath Proof Explorer


Theorem deg1addle2

Description: If both factors have degree bounded by L , then the sum of the polynomials also has degree bounded by L . (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1addle.y Y=Poly1R
deg1addle.d D=deg1R
deg1addle.r φRRing
deg1addle.b B=BaseY
deg1addle.p +˙=+Y
deg1addle.f φFB
deg1addle.g φGB
deg1addle2.l1 φL*
deg1addle2.l2 φDFL
deg1addle2.l3 φDGL
Assertion deg1addle2 φDF+˙GL

Proof

Step Hyp Ref Expression
1 deg1addle.y Y=Poly1R
2 deg1addle.d D=deg1R
3 deg1addle.r φRRing
4 deg1addle.b B=BaseY
5 deg1addle.p +˙=+Y
6 deg1addle.f φFB
7 deg1addle.g φGB
8 deg1addle2.l1 φL*
9 deg1addle2.l2 φDFL
10 deg1addle2.l3 φDGL
11 1 ply1ring RRingYRing
12 3 11 syl φYRing
13 4 5 ringacl YRingFBGBF+˙GB
14 12 6 7 13 syl3anc φF+˙GB
15 2 1 4 deg1xrcl F+˙GBDF+˙G*
16 14 15 syl φDF+˙G*
17 2 1 4 deg1xrcl GBDG*
18 7 17 syl φDG*
19 2 1 4 deg1xrcl FBDF*
20 6 19 syl φDF*
21 18 20 ifcld φifDFDGDGDF*
22 1 2 3 4 5 6 7 deg1addle φDF+˙GifDFDGDGDF
23 xrmaxle DF*DG*L*ifDFDGDGDFLDFLDGL
24 20 18 8 23 syl3anc φifDFDGDGDFLDFLDGL
25 9 10 24 mpbir2and φifDFDGDGDFL
26 16 21 8 22 25 xrletrd φDF+˙GL