| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummoncoe1fzo.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
gsummoncoe1fzo.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
gsummoncoe1fzo.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 4 |
|
gsummoncoe1fzo.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 5 |
|
gsummoncoe1fzo.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
gsummoncoe1fzo.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 7 |
|
gsummoncoe1fzo.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) |
| 8 |
|
gsummoncoe1fzo.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 9 |
|
gsummoncoe1fzo.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝐴 ∈ 𝐾 ) |
| 10 |
|
gsummoncoe1fzo.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 ..^ 𝑁 ) ) |
| 11 |
|
gsummoncoe1fzo.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 12 |
|
gsummoncoe1fzo.2 |
⊢ ( 𝑘 = 𝐿 → 𝐴 = 𝐶 ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 14 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 16 |
15
|
ringcmnd |
⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
| 17 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) |
| 20 |
19
|
eldifbd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → ¬ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) |
| 21 |
20
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) = 0 ) |
| 22 |
21
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0 ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 23 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → 𝑅 ∈ Ring ) |
| 24 |
19
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 25 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 26 |
25 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 27 |
25
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 28 |
15 27
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 31 |
3 1 2
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 32 |
5 31
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 34 |
26 4 29 30 33
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) |
| 35 |
24 34
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) |
| 36 |
1 2 7 8
|
ply10s0 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) → ( 0 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 37 |
23 35 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → ( 0 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 38 |
22 37
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 39 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ∈ Fin ) |
| 41 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 42 |
5 41
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
| 44 |
9
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 ∈ 𝐾 ) |
| 45 |
44
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 ∈ 𝐾 ) |
| 46 |
6 8
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
| 47 |
5 46
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
| 48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 0 ∈ 𝐾 ) |
| 49 |
45 48
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∈ 𝐾 ) |
| 50 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 51 |
5 50
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 52 |
51
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 53 |
6 52
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 55 |
49 54
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 56 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 57 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 58 |
2 56 7 57
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) → ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 59 |
43 55 34 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 60 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 𝑁 ) ⊆ ℕ0 |
| 61 |
60
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ℕ0 ) |
| 62 |
2 13 16 18 38 40 59 61
|
gsummptres2 |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 63 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ( 0 ..^ 𝑁 ) ) |
| 64 |
63
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) = 𝐴 ) |
| 65 |
64
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 66 |
65
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 67 |
66
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 68 |
62 67
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 69 |
68
|
fveq2d |
⊢ ( 𝜑 → ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 70 |
69
|
fveq1d |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) ) |
| 71 |
49
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∈ 𝐾 ) |
| 72 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ) |
| 73 |
72 18 40 44 47
|
mptiffisupp |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ) finSupp 0 ) |
| 74 |
60 10
|
sselid |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
| 75 |
1 2 3 4 5 6 7 8 71 73 74
|
gsummoncoe1 |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ) |
| 76 |
70 75
|
eqtr3d |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) ) |
| 77 |
|
eleq1 |
⊢ ( 𝑘 = 𝐿 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↔ 𝐿 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 78 |
77 12
|
ifbieq1d |
⊢ ( 𝑘 = 𝐿 → if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) = if ( 𝐿 ∈ ( 0 ..^ 𝑁 ) , 𝐶 , 0 ) ) |
| 79 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐿 ) → if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) = if ( 𝐿 ∈ ( 0 ..^ 𝑁 ) , 𝐶 , 0 ) ) |
| 80 |
10 79
|
csbied |
⊢ ( 𝜑 → ⦋ 𝐿 / 𝑘 ⦌ if ( 𝑘 ∈ ( 0 ..^ 𝑁 ) , 𝐴 , 0 ) = if ( 𝐿 ∈ ( 0 ..^ 𝑁 ) , 𝐶 , 0 ) ) |
| 81 |
10
|
iftrued |
⊢ ( 𝜑 → if ( 𝐿 ∈ ( 0 ..^ 𝑁 ) , 𝐶 , 0 ) = 𝐶 ) |
| 82 |
76 80 81
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = 𝐶 ) |