| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptiffisupp.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  𝑍 ) ) | 
						
							| 2 |  | mptiffisupp.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 3 |  | mptiffisupp.b | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 4 |  | mptiffisupp.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐶  ∈  𝑉 ) | 
						
							| 5 |  | mptiffisupp.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑊 ) | 
						
							| 6 | 2 | mptexd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  𝑍 ) )  ∈  V ) | 
						
							| 7 | 1 6 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 8 | 1 | funmpt2 | ⊢ Fun  𝐹 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 10 |  | partfun | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐵 ,  𝐶 ,  𝑍 ) )  =  ( ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  ↦  𝐶 )  ∪  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 ) ) | 
						
							| 11 | 1 10 | eqtri | ⊢ 𝐹  =  ( ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  ↦  𝐶 )  ∪  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 ) ) | 
						
							| 12 | 11 | oveq1i | ⊢ ( 𝐹  supp  𝑍 )  =  ( ( ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  ↦  𝐶 )  ∪  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 ) )  supp  𝑍 ) | 
						
							| 13 |  | inss2 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐵 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ⊆  𝐵 ) | 
						
							| 15 | 14 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 16 | 15 4 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐵 ) )  →  𝐶  ∈  𝑉 ) | 
						
							| 17 | 16 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  ↦  𝐶 ) : ( 𝐴  ∩  𝐵 ) ⟶ 𝑉 ) | 
						
							| 18 |  | incom | ⊢ ( 𝐵  ∩  𝐴 )  =  ( 𝐴  ∩  𝐵 ) | 
						
							| 19 |  | infi | ⊢ ( 𝐵  ∈  Fin  →  ( 𝐵  ∩  𝐴 )  ∈  Fin ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐴 )  ∈  Fin ) | 
						
							| 21 | 18 20 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ∈  Fin ) | 
						
							| 22 | 17 21 5 | fidmfisupp | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  ↦  𝐶 )  finSupp  𝑍 ) | 
						
							| 23 |  | difexg | ⊢ ( 𝐴  ∈  𝑈  →  ( 𝐴  ∖  𝐵 )  ∈  V ) | 
						
							| 24 |  | mptexg | ⊢ ( ( 𝐴  ∖  𝐵 )  ∈  V  →  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∈  V ) | 
						
							| 25 | 2 23 24 | 3syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∈  V ) | 
						
							| 26 |  | funmpt | ⊢ Fun  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 ) | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  Fun  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 ) ) | 
						
							| 28 |  | supppreima | ⊢ ( ( Fun  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∧  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∈  V  ∧  𝑍  ∈  𝑊 )  →  ( ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  supp  𝑍 )  =  ( ◡ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  “  ( ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∖  { 𝑍 } ) ) ) | 
						
							| 29 | 26 25 5 28 | mp3an2i | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  supp  𝑍 )  =  ( ◡ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  “  ( ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∖  { 𝑍 } ) ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  =  ∅ )  →  ( 𝐴  ∖  𝐵 )  =  ∅ ) | 
						
							| 31 | 30 | mpteq1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  =  ∅ )  →  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  =  ( 𝑥  ∈  ∅  ↦  𝑍 ) ) | 
						
							| 32 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  𝑍 )  =  ∅ | 
						
							| 33 | 31 32 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  =  ∅ )  →  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  =  ∅ ) | 
						
							| 34 | 33 | cnveqd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  =  ∅ )  →  ◡ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  =  ◡ ∅ ) | 
						
							| 35 |  | cnv0 | ⊢ ◡ ∅  =  ∅ | 
						
							| 36 | 34 35 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  =  ∅ )  →  ◡ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  =  ∅ ) | 
						
							| 37 | 36 | imaeq1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  =  ∅ )  →  ( ◡ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  “  ( ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∖  { 𝑍 } ) )  =  ( ∅  “  ( ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∖  { 𝑍 } ) ) ) | 
						
							| 38 |  | 0ima | ⊢ ( ∅  “  ( ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∖  { 𝑍 } ) )  =  ∅ | 
						
							| 39 | 37 38 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  =  ∅ )  →  ( ◡ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  “  ( ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∖  { 𝑍 } ) )  =  ∅ ) | 
						
							| 40 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  =  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 ) | 
						
							| 41 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  ≠  ∅ )  →  ( 𝐴  ∖  𝐵 )  ≠  ∅ ) | 
						
							| 42 | 40 41 | rnmptc | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  ≠  ∅ )  →  ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  =  { 𝑍 } ) | 
						
							| 43 | 42 | difeq1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  ≠  ∅ )  →  ( ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∖  { 𝑍 } )  =  ( { 𝑍 }  ∖  { 𝑍 } ) ) | 
						
							| 44 |  | difid | ⊢ ( { 𝑍 }  ∖  { 𝑍 } )  =  ∅ | 
						
							| 45 | 43 44 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  ≠  ∅ )  →  ( ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∖  { 𝑍 } )  =  ∅ ) | 
						
							| 46 | 45 | imaeq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  ≠  ∅ )  →  ( ◡ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  “  ( ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∖  { 𝑍 } ) )  =  ( ◡ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  “  ∅ ) ) | 
						
							| 47 |  | ima0 | ⊢ ( ◡ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  “  ∅ )  =  ∅ | 
						
							| 48 | 46 47 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  𝐵 )  ≠  ∅ )  →  ( ◡ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  “  ( ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∖  { 𝑍 } ) )  =  ∅ ) | 
						
							| 49 | 39 48 | pm2.61dane | ⊢ ( 𝜑  →  ( ◡ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  “  ( ran  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  ∖  { 𝑍 } ) )  =  ∅ ) | 
						
							| 50 | 29 49 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  supp  𝑍 )  =  ∅ ) | 
						
							| 51 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 52 | 50 51 | eqeltrdi | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  supp  𝑍 )  ∈  Fin ) | 
						
							| 53 | 25 5 27 52 | isfsuppd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 )  finSupp  𝑍 ) | 
						
							| 54 | 22 53 | fsuppun | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  ↦  𝐶 )  ∪  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↦  𝑍 ) )  supp  𝑍 )  ∈  Fin ) | 
						
							| 55 | 12 54 | eqeltrid | ⊢ ( 𝜑  →  ( 𝐹  supp  𝑍 )  ∈  Fin ) | 
						
							| 56 | 7 5 9 55 | isfsuppd | ⊢ ( 𝜑  →  𝐹  finSupp  𝑍 ) |