| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptiffisupp.f |
|
| 2 |
|
mptiffisupp.a |
|
| 3 |
|
mptiffisupp.b |
|
| 4 |
|
mptiffisupp.c |
|
| 5 |
|
mptiffisupp.z |
|
| 6 |
2
|
mptexd |
|
| 7 |
1 6
|
eqeltrid |
|
| 8 |
1
|
funmpt2 |
|
| 9 |
8
|
a1i |
|
| 10 |
|
partfun |
|
| 11 |
1 10
|
eqtri |
|
| 12 |
11
|
oveq1i |
|
| 13 |
|
inss2 |
|
| 14 |
13
|
a1i |
|
| 15 |
14
|
sselda |
|
| 16 |
15 4
|
syldan |
|
| 17 |
16
|
fmpttd |
|
| 18 |
|
incom |
|
| 19 |
|
infi |
|
| 20 |
3 19
|
syl |
|
| 21 |
18 20
|
eqeltrrid |
|
| 22 |
17 21 5
|
fidmfisupp |
|
| 23 |
|
difexg |
|
| 24 |
|
mptexg |
|
| 25 |
2 23 24
|
3syl |
|
| 26 |
|
funmpt |
|
| 27 |
26
|
a1i |
|
| 28 |
|
supppreima |
|
| 29 |
26 25 5 28
|
mp3an2i |
|
| 30 |
|
simpr |
|
| 31 |
30
|
mpteq1d |
|
| 32 |
|
mpt0 |
|
| 33 |
31 32
|
eqtrdi |
|
| 34 |
33
|
cnveqd |
|
| 35 |
|
cnv0 |
|
| 36 |
34 35
|
eqtrdi |
|
| 37 |
36
|
imaeq1d |
|
| 38 |
|
0ima |
|
| 39 |
37 38
|
eqtrdi |
|
| 40 |
|
eqid |
|
| 41 |
|
simpr |
|
| 42 |
40 41
|
rnmptc |
|
| 43 |
42
|
difeq1d |
|
| 44 |
|
difid |
|
| 45 |
43 44
|
eqtrdi |
|
| 46 |
45
|
imaeq2d |
|
| 47 |
|
ima0 |
|
| 48 |
46 47
|
eqtrdi |
|
| 49 |
39 48
|
pm2.61dane |
|
| 50 |
29 49
|
eqtrd |
|
| 51 |
|
0fi |
|
| 52 |
50 51
|
eqeltrdi |
|
| 53 |
25 5 27 52
|
isfsuppd |
|
| 54 |
22 53
|
fsuppun |
|
| 55 |
12 54
|
eqeltrid |
|
| 56 |
7 5 9 55
|
isfsuppd |
|