Metamath Proof Explorer


Theorem supppreima

Description: Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024)

Ref Expression
Assertion supppreima FunFFVZWFsuppZ=F-1ranFZ

Proof

Step Hyp Ref Expression
1 cnvimarndm F-1ranF=domF
2 1 a1i FunFFVZWF-1ranF=domF
3 2 difeq1d FunFFVZWF-1ranFF-1Z=domFF-1Z
4 difpreima FunFF-1ranFZ=F-1ranFF-1Z
5 4 3ad2ant1 FunFFVZWF-1ranFZ=F-1ranFF-1Z
6 suppssdm FsuppZdomF
7 dfss4 FsuppZdomFdomFdomFsuppZF=FsuppZ
8 6 7 mpbi domFdomFsuppZF=FsuppZ
9 suppiniseg FunFFVZWdomFsuppZF=F-1Z
10 9 difeq2d FunFFVZWdomFdomFsuppZF=domFF-1Z
11 8 10 eqtr3id FunFFVZWFsuppZ=domFF-1Z
12 3 5 11 3eqtr4rd FunFFVZWFsuppZ=F-1ranFZ