Step |
Hyp |
Ref |
Expression |
1 |
|
cnvimarndm |
|- ( `' F " ran F ) = dom F |
2 |
1
|
a1i |
|- ( ( Fun F /\ F e. V /\ Z e. W ) -> ( `' F " ran F ) = dom F ) |
3 |
2
|
difeq1d |
|- ( ( Fun F /\ F e. V /\ Z e. W ) -> ( ( `' F " ran F ) \ ( `' F " { Z } ) ) = ( dom F \ ( `' F " { Z } ) ) ) |
4 |
|
difpreima |
|- ( Fun F -> ( `' F " ( ran F \ { Z } ) ) = ( ( `' F " ran F ) \ ( `' F " { Z } ) ) ) |
5 |
4
|
3ad2ant1 |
|- ( ( Fun F /\ F e. V /\ Z e. W ) -> ( `' F " ( ran F \ { Z } ) ) = ( ( `' F " ran F ) \ ( `' F " { Z } ) ) ) |
6 |
|
suppssdm |
|- ( F supp Z ) C_ dom F |
7 |
|
dfss4 |
|- ( ( F supp Z ) C_ dom F <-> ( dom F \ ( dom F \ ( F supp Z ) ) ) = ( F supp Z ) ) |
8 |
6 7
|
mpbi |
|- ( dom F \ ( dom F \ ( F supp Z ) ) ) = ( F supp Z ) |
9 |
|
suppiniseg |
|- ( ( Fun F /\ F e. V /\ Z e. W ) -> ( dom F \ ( F supp Z ) ) = ( `' F " { Z } ) ) |
10 |
9
|
difeq2d |
|- ( ( Fun F /\ F e. V /\ Z e. W ) -> ( dom F \ ( dom F \ ( F supp Z ) ) ) = ( dom F \ ( `' F " { Z } ) ) ) |
11 |
8 10
|
eqtr3id |
|- ( ( Fun F /\ F e. V /\ Z e. W ) -> ( F supp Z ) = ( dom F \ ( `' F " { Z } ) ) ) |
12 |
3 5 11
|
3eqtr4rd |
|- ( ( Fun F /\ F e. V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( ran F \ { Z } ) ) ) |