Step |
Hyp |
Ref |
Expression |
1 |
|
snfi |
|- { .0. } e. Fin |
2 |
|
simpll |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> Fun F ) |
3 |
|
simplr |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> F e. V ) |
4 |
|
simprl |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> .0. e. W ) |
5 |
|
ressupprn |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ran ( F |` ( F supp .0. ) ) = ( ran F \ { .0. } ) ) |
6 |
2 3 4 5
|
syl3anc |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> ran ( F |` ( F supp .0. ) ) = ( ran F \ { .0. } ) ) |
7 |
|
simprr |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> F finSupp .0. ) |
8 |
7
|
fsuppimpd |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> ( F supp .0. ) e. Fin ) |
9 |
|
suppssdm |
|- ( F supp .0. ) C_ dom F |
10 |
|
ssdmres |
|- ( ( F supp .0. ) C_ dom F <-> dom ( F |` ( F supp .0. ) ) = ( F supp .0. ) ) |
11 |
9 10
|
mpbi |
|- dom ( F |` ( F supp .0. ) ) = ( F supp .0. ) |
12 |
2
|
funresd |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> Fun ( F |` ( F supp .0. ) ) ) |
13 |
|
funforn |
|- ( Fun ( F |` ( F supp .0. ) ) <-> ( F |` ( F supp .0. ) ) : dom ( F |` ( F supp .0. ) ) -onto-> ran ( F |` ( F supp .0. ) ) ) |
14 |
12 13
|
sylib |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> ( F |` ( F supp .0. ) ) : dom ( F |` ( F supp .0. ) ) -onto-> ran ( F |` ( F supp .0. ) ) ) |
15 |
|
foeq2 |
|- ( dom ( F |` ( F supp .0. ) ) = ( F supp .0. ) -> ( ( F |` ( F supp .0. ) ) : dom ( F |` ( F supp .0. ) ) -onto-> ran ( F |` ( F supp .0. ) ) <-> ( F |` ( F supp .0. ) ) : ( F supp .0. ) -onto-> ran ( F |` ( F supp .0. ) ) ) ) |
16 |
15
|
biimpa |
|- ( ( dom ( F |` ( F supp .0. ) ) = ( F supp .0. ) /\ ( F |` ( F supp .0. ) ) : dom ( F |` ( F supp .0. ) ) -onto-> ran ( F |` ( F supp .0. ) ) ) -> ( F |` ( F supp .0. ) ) : ( F supp .0. ) -onto-> ran ( F |` ( F supp .0. ) ) ) |
17 |
11 14 16
|
sylancr |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> ( F |` ( F supp .0. ) ) : ( F supp .0. ) -onto-> ran ( F |` ( F supp .0. ) ) ) |
18 |
|
fofi |
|- ( ( ( F supp .0. ) e. Fin /\ ( F |` ( F supp .0. ) ) : ( F supp .0. ) -onto-> ran ( F |` ( F supp .0. ) ) ) -> ran ( F |` ( F supp .0. ) ) e. Fin ) |
19 |
8 17 18
|
syl2anc |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> ran ( F |` ( F supp .0. ) ) e. Fin ) |
20 |
6 19
|
eqeltrrd |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> ( ran F \ { .0. } ) e. Fin ) |
21 |
|
diffib |
|- ( { .0. } e. Fin -> ( ran F e. Fin <-> ( ran F \ { .0. } ) e. Fin ) ) |
22 |
21
|
biimpar |
|- ( ( { .0. } e. Fin /\ ( ran F \ { .0. } ) e. Fin ) -> ran F e. Fin ) |
23 |
1 20 22
|
sylancr |
|- ( ( ( Fun F /\ F e. V ) /\ ( .0. e. W /\ F finSupp .0. ) ) -> ran F e. Fin ) |