Step |
Hyp |
Ref |
Expression |
1 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
2 |
1
|
biimpi |
|- ( Fun F -> F Fn dom F ) |
3 |
2
|
3ad2ant1 |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> F Fn dom F ) |
4 |
|
dmexg |
|- ( F e. V -> dom F e. _V ) |
5 |
4
|
3ad2ant2 |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> dom F e. _V ) |
6 |
|
simp3 |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> .0. e. W ) |
7 |
|
elsuppfn |
|- ( ( F Fn dom F /\ dom F e. _V /\ .0. e. W ) -> ( x e. ( F supp .0. ) <-> ( x e. dom F /\ ( F ` x ) =/= .0. ) ) ) |
8 |
3 5 6 7
|
syl3anc |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ( x e. ( F supp .0. ) <-> ( x e. dom F /\ ( F ` x ) =/= .0. ) ) ) |
9 |
8
|
anbi1d |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ( ( x e. ( F supp .0. ) /\ ( ( F |` ( F supp .0. ) ) ` x ) = y ) <-> ( ( x e. dom F /\ ( F ` x ) =/= .0. ) /\ ( ( F |` ( F supp .0. ) ) ` x ) = y ) ) ) |
10 |
|
anass |
|- ( ( ( x e. dom F /\ ( F ` x ) =/= .0. ) /\ ( ( F |` ( F supp .0. ) ) ` x ) = y ) <-> ( x e. dom F /\ ( ( F ` x ) =/= .0. /\ ( ( F |` ( F supp .0. ) ) ` x ) = y ) ) ) |
11 |
10
|
a1i |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ( ( ( x e. dom F /\ ( F ` x ) =/= .0. ) /\ ( ( F |` ( F supp .0. ) ) ` x ) = y ) <-> ( x e. dom F /\ ( ( F ` x ) =/= .0. /\ ( ( F |` ( F supp .0. ) ) ` x ) = y ) ) ) ) |
12 |
8
|
biimprd |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ( ( x e. dom F /\ ( F ` x ) =/= .0. ) -> x e. ( F supp .0. ) ) ) |
13 |
12
|
impl |
|- ( ( ( ( Fun F /\ F e. V /\ .0. e. W ) /\ x e. dom F ) /\ ( F ` x ) =/= .0. ) -> x e. ( F supp .0. ) ) |
14 |
13
|
fvresd |
|- ( ( ( ( Fun F /\ F e. V /\ .0. e. W ) /\ x e. dom F ) /\ ( F ` x ) =/= .0. ) -> ( ( F |` ( F supp .0. ) ) ` x ) = ( F ` x ) ) |
15 |
14
|
eqeq1d |
|- ( ( ( ( Fun F /\ F e. V /\ .0. e. W ) /\ x e. dom F ) /\ ( F ` x ) =/= .0. ) -> ( ( ( F |` ( F supp .0. ) ) ` x ) = y <-> ( F ` x ) = y ) ) |
16 |
15
|
pm5.32da |
|- ( ( ( Fun F /\ F e. V /\ .0. e. W ) /\ x e. dom F ) -> ( ( ( F ` x ) =/= .0. /\ ( ( F |` ( F supp .0. ) ) ` x ) = y ) <-> ( ( F ` x ) =/= .0. /\ ( F ` x ) = y ) ) ) |
17 |
|
ancom |
|- ( ( ( F ` x ) =/= .0. /\ ( F ` x ) = y ) <-> ( ( F ` x ) = y /\ ( F ` x ) =/= .0. ) ) |
18 |
|
simpr |
|- ( ( ( ( Fun F /\ F e. V /\ .0. e. W ) /\ x e. dom F ) /\ ( F ` x ) = y ) -> ( F ` x ) = y ) |
19 |
18
|
neeq1d |
|- ( ( ( ( Fun F /\ F e. V /\ .0. e. W ) /\ x e. dom F ) /\ ( F ` x ) = y ) -> ( ( F ` x ) =/= .0. <-> y =/= .0. ) ) |
20 |
19
|
pm5.32da |
|- ( ( ( Fun F /\ F e. V /\ .0. e. W ) /\ x e. dom F ) -> ( ( ( F ` x ) = y /\ ( F ` x ) =/= .0. ) <-> ( ( F ` x ) = y /\ y =/= .0. ) ) ) |
21 |
17 20
|
syl5bb |
|- ( ( ( Fun F /\ F e. V /\ .0. e. W ) /\ x e. dom F ) -> ( ( ( F ` x ) =/= .0. /\ ( F ` x ) = y ) <-> ( ( F ` x ) = y /\ y =/= .0. ) ) ) |
22 |
16 21
|
bitrd |
|- ( ( ( Fun F /\ F e. V /\ .0. e. W ) /\ x e. dom F ) -> ( ( ( F ` x ) =/= .0. /\ ( ( F |` ( F supp .0. ) ) ` x ) = y ) <-> ( ( F ` x ) = y /\ y =/= .0. ) ) ) |
23 |
22
|
pm5.32da |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ( ( x e. dom F /\ ( ( F ` x ) =/= .0. /\ ( ( F |` ( F supp .0. ) ) ` x ) = y ) ) <-> ( x e. dom F /\ ( ( F ` x ) = y /\ y =/= .0. ) ) ) ) |
24 |
9 11 23
|
3bitrd |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ( ( x e. ( F supp .0. ) /\ ( ( F |` ( F supp .0. ) ) ` x ) = y ) <-> ( x e. dom F /\ ( ( F ` x ) = y /\ y =/= .0. ) ) ) ) |
25 |
24
|
rexbidv2 |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ( E. x e. ( F supp .0. ) ( ( F |` ( F supp .0. ) ) ` x ) = y <-> E. x e. dom F ( ( F ` x ) = y /\ y =/= .0. ) ) ) |
26 |
|
suppssdm |
|- ( F supp .0. ) C_ dom F |
27 |
|
fnssres |
|- ( ( F Fn dom F /\ ( F supp .0. ) C_ dom F ) -> ( F |` ( F supp .0. ) ) Fn ( F supp .0. ) ) |
28 |
3 26 27
|
sylancl |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ( F |` ( F supp .0. ) ) Fn ( F supp .0. ) ) |
29 |
|
fvelrnb |
|- ( ( F |` ( F supp .0. ) ) Fn ( F supp .0. ) -> ( y e. ran ( F |` ( F supp .0. ) ) <-> E. x e. ( F supp .0. ) ( ( F |` ( F supp .0. ) ) ` x ) = y ) ) |
30 |
28 29
|
syl |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ( y e. ran ( F |` ( F supp .0. ) ) <-> E. x e. ( F supp .0. ) ( ( F |` ( F supp .0. ) ) ` x ) = y ) ) |
31 |
|
fvelrnb |
|- ( F Fn dom F -> ( y e. ran F <-> E. x e. dom F ( F ` x ) = y ) ) |
32 |
31
|
anbi1d |
|- ( F Fn dom F -> ( ( y e. ran F /\ y =/= .0. ) <-> ( E. x e. dom F ( F ` x ) = y /\ y =/= .0. ) ) ) |
33 |
|
eldifsn |
|- ( y e. ( ran F \ { .0. } ) <-> ( y e. ran F /\ y =/= .0. ) ) |
34 |
|
r19.41v |
|- ( E. x e. dom F ( ( F ` x ) = y /\ y =/= .0. ) <-> ( E. x e. dom F ( F ` x ) = y /\ y =/= .0. ) ) |
35 |
32 33 34
|
3bitr4g |
|- ( F Fn dom F -> ( y e. ( ran F \ { .0. } ) <-> E. x e. dom F ( ( F ` x ) = y /\ y =/= .0. ) ) ) |
36 |
3 35
|
syl |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ( y e. ( ran F \ { .0. } ) <-> E. x e. dom F ( ( F ` x ) = y /\ y =/= .0. ) ) ) |
37 |
25 30 36
|
3bitr4d |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ( y e. ran ( F |` ( F supp .0. ) ) <-> y e. ( ran F \ { .0. } ) ) ) |
38 |
37
|
eqrdv |
|- ( ( Fun F /\ F e. V /\ .0. e. W ) -> ran ( F |` ( F supp .0. ) ) = ( ran F \ { .0. } ) ) |