| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
| 2 |
1
|
biimpi |
⊢ ( Fun 𝐹 → 𝐹 Fn dom 𝐹 ) |
| 3 |
2
|
3ad2ant1 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → 𝐹 Fn dom 𝐹 ) |
| 4 |
|
dmexg |
⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → dom 𝐹 ∈ V ) |
| 6 |
|
simp3 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → 0 ∈ 𝑊 ) |
| 7 |
|
elsuppfn |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ dom 𝐹 ∈ V ∧ 0 ∈ 𝑊 ) → ( 𝑥 ∈ ( 𝐹 supp 0 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) ) |
| 8 |
3 5 6 7
|
syl3anc |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ( 𝑥 ∈ ( 𝐹 supp 0 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) ) |
| 9 |
8
|
anbi1d |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ( ( 𝑥 ∈ ( 𝐹 supp 0 ) ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ) ) |
| 10 |
|
anass |
⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ) ) |
| 11 |
10
|
a1i |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ( ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ) ) ) |
| 12 |
8
|
biimprd |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) → 𝑥 ∈ ( 𝐹 supp 0 ) ) ) |
| 13 |
12
|
impl |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) → 𝑥 ∈ ( 𝐹 supp 0 ) ) |
| 14 |
13
|
fvresd |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) → ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 15 |
14
|
eqeq1d |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) → ( ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 16 |
15
|
pm5.32da |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) ) |
| 17 |
|
ancom |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) |
| 18 |
|
simpr |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
| 19 |
18
|
neeq1d |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ↔ 𝑦 ≠ 0 ) ) |
| 20 |
19
|
pm5.32da |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 ≠ 0 ) ) ) |
| 21 |
17 20
|
bitrid |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 ≠ 0 ) ) ) |
| 22 |
16 21
|
bitrd |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 ≠ 0 ) ) ) |
| 23 |
22
|
pm5.32da |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ( ( 𝑥 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 ≠ 0 ) ) ) ) |
| 24 |
9 11 23
|
3bitrd |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ( ( 𝑥 ∈ ( 𝐹 supp 0 ) ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 ≠ 0 ) ) ) ) |
| 25 |
24
|
rexbidv2 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ ( 𝐹 supp 0 ) ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 ≠ 0 ) ) ) |
| 26 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
| 27 |
|
fnssres |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ ( 𝐹 supp 0 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) Fn ( 𝐹 supp 0 ) ) |
| 28 |
3 26 27
|
sylancl |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) Fn ( 𝐹 supp 0 ) ) |
| 29 |
|
fvelrnb |
⊢ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) Fn ( 𝐹 supp 0 ) → ( 𝑦 ∈ ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↔ ∃ 𝑥 ∈ ( 𝐹 supp 0 ) ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ( 𝑦 ∈ ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↔ ∃ 𝑥 ∈ ( 𝐹 supp 0 ) ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = 𝑦 ) ) |
| 31 |
|
fvelrnb |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ dom 𝐹 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 32 |
31
|
anbi1d |
⊢ ( 𝐹 Fn dom 𝐹 → ( ( 𝑦 ∈ ran 𝐹 ∧ 𝑦 ≠ 0 ) ↔ ( ∃ 𝑥 ∈ dom 𝐹 ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 ≠ 0 ) ) ) |
| 33 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ ( 𝑦 ∈ ran 𝐹 ∧ 𝑦 ≠ 0 ) ) |
| 34 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 ≠ 0 ) ↔ ( ∃ 𝑥 ∈ dom 𝐹 ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 ≠ 0 ) ) |
| 35 |
32 33 34
|
3bitr4g |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ ∃ 𝑥 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 ≠ 0 ) ) ) |
| 36 |
3 35
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ( 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ ∃ 𝑥 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 ≠ 0 ) ) ) |
| 37 |
25 30 36
|
3bitr4d |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ( 𝑦 ∈ ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↔ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) |
| 38 |
37
|
eqrdv |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊 ) → ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( ran 𝐹 ∖ { 0 } ) ) |