| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptiffisupp.f |
|- F = ( x e. A |-> if ( x e. B , C , Z ) ) |
| 2 |
|
mptiffisupp.a |
|- ( ph -> A e. U ) |
| 3 |
|
mptiffisupp.b |
|- ( ph -> B e. Fin ) |
| 4 |
|
mptiffisupp.c |
|- ( ( ph /\ x e. B ) -> C e. V ) |
| 5 |
|
mptiffisupp.z |
|- ( ph -> Z e. W ) |
| 6 |
2
|
mptexd |
|- ( ph -> ( x e. A |-> if ( x e. B , C , Z ) ) e. _V ) |
| 7 |
1 6
|
eqeltrid |
|- ( ph -> F e. _V ) |
| 8 |
1
|
funmpt2 |
|- Fun F |
| 9 |
8
|
a1i |
|- ( ph -> Fun F ) |
| 10 |
|
partfun |
|- ( x e. A |-> if ( x e. B , C , Z ) ) = ( ( x e. ( A i^i B ) |-> C ) u. ( x e. ( A \ B ) |-> Z ) ) |
| 11 |
1 10
|
eqtri |
|- F = ( ( x e. ( A i^i B ) |-> C ) u. ( x e. ( A \ B ) |-> Z ) ) |
| 12 |
11
|
oveq1i |
|- ( F supp Z ) = ( ( ( x e. ( A i^i B ) |-> C ) u. ( x e. ( A \ B ) |-> Z ) ) supp Z ) |
| 13 |
|
inss2 |
|- ( A i^i B ) C_ B |
| 14 |
13
|
a1i |
|- ( ph -> ( A i^i B ) C_ B ) |
| 15 |
14
|
sselda |
|- ( ( ph /\ x e. ( A i^i B ) ) -> x e. B ) |
| 16 |
15 4
|
syldan |
|- ( ( ph /\ x e. ( A i^i B ) ) -> C e. V ) |
| 17 |
16
|
fmpttd |
|- ( ph -> ( x e. ( A i^i B ) |-> C ) : ( A i^i B ) --> V ) |
| 18 |
|
incom |
|- ( B i^i A ) = ( A i^i B ) |
| 19 |
|
infi |
|- ( B e. Fin -> ( B i^i A ) e. Fin ) |
| 20 |
3 19
|
syl |
|- ( ph -> ( B i^i A ) e. Fin ) |
| 21 |
18 20
|
eqeltrrid |
|- ( ph -> ( A i^i B ) e. Fin ) |
| 22 |
17 21 5
|
fidmfisupp |
|- ( ph -> ( x e. ( A i^i B ) |-> C ) finSupp Z ) |
| 23 |
|
difexg |
|- ( A e. U -> ( A \ B ) e. _V ) |
| 24 |
|
mptexg |
|- ( ( A \ B ) e. _V -> ( x e. ( A \ B ) |-> Z ) e. _V ) |
| 25 |
2 23 24
|
3syl |
|- ( ph -> ( x e. ( A \ B ) |-> Z ) e. _V ) |
| 26 |
|
funmpt |
|- Fun ( x e. ( A \ B ) |-> Z ) |
| 27 |
26
|
a1i |
|- ( ph -> Fun ( x e. ( A \ B ) |-> Z ) ) |
| 28 |
|
supppreima |
|- ( ( Fun ( x e. ( A \ B ) |-> Z ) /\ ( x e. ( A \ B ) |-> Z ) e. _V /\ Z e. W ) -> ( ( x e. ( A \ B ) |-> Z ) supp Z ) = ( `' ( x e. ( A \ B ) |-> Z ) " ( ran ( x e. ( A \ B ) |-> Z ) \ { Z } ) ) ) |
| 29 |
26 25 5 28
|
mp3an2i |
|- ( ph -> ( ( x e. ( A \ B ) |-> Z ) supp Z ) = ( `' ( x e. ( A \ B ) |-> Z ) " ( ran ( x e. ( A \ B ) |-> Z ) \ { Z } ) ) ) |
| 30 |
|
simpr |
|- ( ( ph /\ ( A \ B ) = (/) ) -> ( A \ B ) = (/) ) |
| 31 |
30
|
mpteq1d |
|- ( ( ph /\ ( A \ B ) = (/) ) -> ( x e. ( A \ B ) |-> Z ) = ( x e. (/) |-> Z ) ) |
| 32 |
|
mpt0 |
|- ( x e. (/) |-> Z ) = (/) |
| 33 |
31 32
|
eqtrdi |
|- ( ( ph /\ ( A \ B ) = (/) ) -> ( x e. ( A \ B ) |-> Z ) = (/) ) |
| 34 |
33
|
cnveqd |
|- ( ( ph /\ ( A \ B ) = (/) ) -> `' ( x e. ( A \ B ) |-> Z ) = `' (/) ) |
| 35 |
|
cnv0 |
|- `' (/) = (/) |
| 36 |
34 35
|
eqtrdi |
|- ( ( ph /\ ( A \ B ) = (/) ) -> `' ( x e. ( A \ B ) |-> Z ) = (/) ) |
| 37 |
36
|
imaeq1d |
|- ( ( ph /\ ( A \ B ) = (/) ) -> ( `' ( x e. ( A \ B ) |-> Z ) " ( ran ( x e. ( A \ B ) |-> Z ) \ { Z } ) ) = ( (/) " ( ran ( x e. ( A \ B ) |-> Z ) \ { Z } ) ) ) |
| 38 |
|
0ima |
|- ( (/) " ( ran ( x e. ( A \ B ) |-> Z ) \ { Z } ) ) = (/) |
| 39 |
37 38
|
eqtrdi |
|- ( ( ph /\ ( A \ B ) = (/) ) -> ( `' ( x e. ( A \ B ) |-> Z ) " ( ran ( x e. ( A \ B ) |-> Z ) \ { Z } ) ) = (/) ) |
| 40 |
|
eqid |
|- ( x e. ( A \ B ) |-> Z ) = ( x e. ( A \ B ) |-> Z ) |
| 41 |
|
simpr |
|- ( ( ph /\ ( A \ B ) =/= (/) ) -> ( A \ B ) =/= (/) ) |
| 42 |
40 41
|
rnmptc |
|- ( ( ph /\ ( A \ B ) =/= (/) ) -> ran ( x e. ( A \ B ) |-> Z ) = { Z } ) |
| 43 |
42
|
difeq1d |
|- ( ( ph /\ ( A \ B ) =/= (/) ) -> ( ran ( x e. ( A \ B ) |-> Z ) \ { Z } ) = ( { Z } \ { Z } ) ) |
| 44 |
|
difid |
|- ( { Z } \ { Z } ) = (/) |
| 45 |
43 44
|
eqtrdi |
|- ( ( ph /\ ( A \ B ) =/= (/) ) -> ( ran ( x e. ( A \ B ) |-> Z ) \ { Z } ) = (/) ) |
| 46 |
45
|
imaeq2d |
|- ( ( ph /\ ( A \ B ) =/= (/) ) -> ( `' ( x e. ( A \ B ) |-> Z ) " ( ran ( x e. ( A \ B ) |-> Z ) \ { Z } ) ) = ( `' ( x e. ( A \ B ) |-> Z ) " (/) ) ) |
| 47 |
|
ima0 |
|- ( `' ( x e. ( A \ B ) |-> Z ) " (/) ) = (/) |
| 48 |
46 47
|
eqtrdi |
|- ( ( ph /\ ( A \ B ) =/= (/) ) -> ( `' ( x e. ( A \ B ) |-> Z ) " ( ran ( x e. ( A \ B ) |-> Z ) \ { Z } ) ) = (/) ) |
| 49 |
39 48
|
pm2.61dane |
|- ( ph -> ( `' ( x e. ( A \ B ) |-> Z ) " ( ran ( x e. ( A \ B ) |-> Z ) \ { Z } ) ) = (/) ) |
| 50 |
29 49
|
eqtrd |
|- ( ph -> ( ( x e. ( A \ B ) |-> Z ) supp Z ) = (/) ) |
| 51 |
|
0fi |
|- (/) e. Fin |
| 52 |
50 51
|
eqeltrdi |
|- ( ph -> ( ( x e. ( A \ B ) |-> Z ) supp Z ) e. Fin ) |
| 53 |
25 5 27 52
|
isfsuppd |
|- ( ph -> ( x e. ( A \ B ) |-> Z ) finSupp Z ) |
| 54 |
22 53
|
fsuppun |
|- ( ph -> ( ( ( x e. ( A i^i B ) |-> C ) u. ( x e. ( A \ B ) |-> Z ) ) supp Z ) e. Fin ) |
| 55 |
12 54
|
eqeltrid |
|- ( ph -> ( F supp Z ) e. Fin ) |
| 56 |
7 5 9 55
|
isfsuppd |
|- ( ph -> F finSupp Z ) |