Metamath Proof Explorer


Theorem gsummoncoe1fz

Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. See gsummoncoe1fzo . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummoncoe1fz.1 𝑃 = ( Poly1𝑅 )
gsummoncoe1fz.2 𝐵 = ( Base ‘ 𝑃 )
gsummoncoe1fz.3 𝑋 = ( var1𝑅 )
gsummoncoe1fz.4 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
gsummoncoe1fz.5 ( 𝜑𝑅 ∈ Ring )
gsummoncoe1fz.6 𝐾 = ( Base ‘ 𝑅 )
gsummoncoe1fz.7 = ( ·𝑠𝑃 )
gsummoncoe1fz.8 ( 𝜑𝐷 ∈ ℕ0 )
gsummoncoe1fz.9 ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝐷 ) 𝐴𝐾 )
gsummoncoe1fz.10 ( 𝜑𝐿 ∈ ( 0 ... 𝐷 ) )
gsummoncoe1fz.11 ( 𝑘 = 𝐿𝐴 = 𝐶 )
Assertion gsummoncoe1fz ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝐷 ) ↦ ( 𝐴 ( 𝑘 𝑋 ) ) ) ) ) ‘ 𝐿 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 gsummoncoe1fz.1 𝑃 = ( Poly1𝑅 )
2 gsummoncoe1fz.2 𝐵 = ( Base ‘ 𝑃 )
3 gsummoncoe1fz.3 𝑋 = ( var1𝑅 )
4 gsummoncoe1fz.4 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
5 gsummoncoe1fz.5 ( 𝜑𝑅 ∈ Ring )
6 gsummoncoe1fz.6 𝐾 = ( Base ‘ 𝑅 )
7 gsummoncoe1fz.7 = ( ·𝑠𝑃 )
8 gsummoncoe1fz.8 ( 𝜑𝐷 ∈ ℕ0 )
9 gsummoncoe1fz.9 ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝐷 ) 𝐴𝐾 )
10 gsummoncoe1fz.10 ( 𝜑𝐿 ∈ ( 0 ... 𝐷 ) )
11 gsummoncoe1fz.11 ( 𝑘 = 𝐿𝐴 = 𝐶 )
12 8 nn0zd ( 𝜑𝐷 ∈ ℤ )
13 fzval3 ( 𝐷 ∈ ℤ → ( 0 ... 𝐷 ) = ( 0 ..^ ( 𝐷 + 1 ) ) )
14 12 13 syl ( 𝜑 → ( 0 ... 𝐷 ) = ( 0 ..^ ( 𝐷 + 1 ) ) )
15 14 mpteq1d ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝐷 ) ↦ ( 𝐴 ( 𝑘 𝑋 ) ) ) = ( 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) ↦ ( 𝐴 ( 𝑘 𝑋 ) ) ) )
16 15 oveq2d ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝐷 ) ↦ ( 𝐴 ( 𝑘 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) ↦ ( 𝐴 ( 𝑘 𝑋 ) ) ) ) )
17 16 fveq2d ( 𝜑 → ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝐷 ) ↦ ( 𝐴 ( 𝑘 𝑋 ) ) ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) ↦ ( 𝐴 ( 𝑘 𝑋 ) ) ) ) ) )
18 17 fveq1d ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝐷 ) ↦ ( 𝐴 ( 𝑘 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) ↦ ( 𝐴 ( 𝑘 𝑋 ) ) ) ) ) ‘ 𝐿 ) )
19 eqid ( 0g𝑅 ) = ( 0g𝑅 )
20 9 14 raleqtrdv ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) 𝐴𝐾 )
21 10 14 eleqtrd ( 𝜑𝐿 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) )
22 peano2nn0 ( 𝐷 ∈ ℕ0 → ( 𝐷 + 1 ) ∈ ℕ0 )
23 8 22 syl ( 𝜑 → ( 𝐷 + 1 ) ∈ ℕ0 )
24 1 2 3 4 5 6 7 19 20 21 23 11 gsummoncoe1fzo ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) ↦ ( 𝐴 ( 𝑘 𝑋 ) ) ) ) ) ‘ 𝐿 ) = 𝐶 )
25 18 24 eqtrd ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝐷 ) ↦ ( 𝐴 ( 𝑘 𝑋 ) ) ) ) ) ‘ 𝐿 ) = 𝐶 )