| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummoncoe1fz.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
gsummoncoe1fz.2 |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
gsummoncoe1fz.3 |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 4 |
|
gsummoncoe1fz.4 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 5 |
|
gsummoncoe1fz.5 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
gsummoncoe1fz.6 |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 7 |
|
gsummoncoe1fz.7 |
⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) |
| 8 |
|
gsummoncoe1fz.8 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
| 9 |
|
gsummoncoe1fz.9 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝐷 ) 𝐴 ∈ 𝐾 ) |
| 10 |
|
gsummoncoe1fz.10 |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 ... 𝐷 ) ) |
| 11 |
|
gsummoncoe1fz.11 |
⊢ ( 𝑘 = 𝐿 → 𝐴 = 𝐶 ) |
| 12 |
8
|
nn0zd |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
| 13 |
|
fzval3 |
⊢ ( 𝐷 ∈ ℤ → ( 0 ... 𝐷 ) = ( 0 ..^ ( 𝐷 + 1 ) ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝐷 ) = ( 0 ..^ ( 𝐷 + 1 ) ) ) |
| 15 |
14
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝐷 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝐷 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝜑 → ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝐷 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 18 |
17
|
fveq1d |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝐷 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 20 |
9 14
|
raleqtrdv |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) 𝐴 ∈ 𝐾 ) |
| 21 |
10 14
|
eleqtrd |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) ) |
| 22 |
|
peano2nn0 |
⊢ ( 𝐷 ∈ ℕ0 → ( 𝐷 + 1 ) ∈ ℕ0 ) |
| 23 |
8 22
|
syl |
⊢ ( 𝜑 → ( 𝐷 + 1 ) ∈ ℕ0 ) |
| 24 |
1 2 3 4 5 6 7 19 20 21 23 11
|
gsummoncoe1fzo |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ..^ ( 𝐷 + 1 ) ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = 𝐶 ) |
| 25 |
18 24
|
eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝐷 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = 𝐶 ) |