| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1gsumz.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1gsumz.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
ply1gsumz.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 4 |
|
ply1gsumz.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
ply1gsumz.f |
⊢ 𝐹 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
| 6 |
|
ply1gsumz.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 7 |
|
ply1gsumz.z |
⊢ 𝑍 = ( 0g ‘ 𝑃 ) |
| 8 |
|
ply1gsumz.a |
⊢ ( 𝜑 → 𝐴 : ( 0 ..^ 𝑁 ) ⟶ 𝐵 ) |
| 9 |
|
ply1gsumz.s |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = 𝑍 ) |
| 10 |
8
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn ( 0 ..^ 𝑁 ) ) |
| 11 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 13 |
12 7
|
ring0cl |
⊢ ( 𝑃 ∈ Ring → 𝑍 ∈ ( Base ‘ 𝑃 ) ) |
| 14 |
4 11 13
|
3syl |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝑃 ) ) |
| 15 |
|
eqid |
⊢ ( coe1 ‘ 𝑍 ) = ( coe1 ‘ 𝑍 ) |
| 16 |
15 12 1 2
|
coe1f |
⊢ ( 𝑍 ∈ ( Base ‘ 𝑃 ) → ( coe1 ‘ 𝑍 ) : ℕ0 ⟶ 𝐵 ) |
| 17 |
14 16
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ 𝑍 ) : ℕ0 ⟶ 𝐵 ) |
| 18 |
17
|
ffnd |
⊢ ( 𝜑 → ( coe1 ‘ 𝑍 ) Fn ℕ0 ) |
| 19 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 𝑁 ) ⊆ ℕ0 |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ℕ0 ) |
| 21 |
18 20
|
fnssresd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑍 ) ↾ ( 0 ..^ 𝑁 ) ) Fn ( 0 ..^ 𝑁 ) ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) ) |
| 23 |
22
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( coe1 ‘ 𝑍 ) ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑗 ) = ( ( coe1 ‘ 𝑍 ) ‘ 𝑗 ) ) |
| 24 |
|
elfzonn0 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → 𝑗 ∈ ℕ0 ) |
| 25 |
9 14
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 26 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) |
| 27 |
1 12 26 15
|
ply1coe1eq |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑍 ∈ ( Base ‘ 𝑃 ) ) → ( ∀ 𝑗 ∈ ℕ0 ( ( coe1 ‘ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ‘ 𝑗 ) = ( ( coe1 ‘ 𝑍 ) ‘ 𝑗 ) ↔ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = 𝑍 ) ) |
| 28 |
27
|
biimpar |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑍 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = 𝑍 ) → ∀ 𝑗 ∈ ℕ0 ( ( coe1 ‘ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ‘ 𝑗 ) = ( ( coe1 ‘ 𝑍 ) ‘ 𝑗 ) ) |
| 29 |
4 25 14 9 28
|
syl31anc |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ0 ( ( coe1 ‘ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ‘ 𝑗 ) = ( ( coe1 ‘ 𝑍 ) ‘ 𝑗 ) ) |
| 30 |
29
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ‘ 𝑗 ) = ( ( coe1 ‘ 𝑍 ) ‘ 𝑗 ) ) |
| 31 |
24 30
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ‘ 𝑗 ) = ( ( coe1 ‘ 𝑍 ) ‘ 𝑗 ) ) |
| 32 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 Fn ( 0 ..^ 𝑁 ) ) |
| 33 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 34 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ V ) |
| 35 |
33 34 5
|
fnmptd |
⊢ ( 𝜑 → 𝐹 Fn ( 0 ..^ 𝑁 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐹 Fn ( 0 ..^ 𝑁 ) ) |
| 37 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 0 ..^ 𝑁 ) ∈ V ) |
| 38 |
|
inidm |
⊢ ( ( 0 ..^ 𝑁 ) ∩ ( 0 ..^ 𝑁 ) ) = ( 0 ..^ 𝑁 ) |
| 39 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
| 40 |
|
oveq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
| 41 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑖 ∈ ( 0 ..^ 𝑁 ) ) |
| 42 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ V ) |
| 43 |
5 40 41 42
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
| 44 |
32 36 37 37 38 39 43
|
offval |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) = ( 𝑖 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐴 ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
| 45 |
44
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 𝑃 Σg ( 𝑖 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐴 ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
| 46 |
45
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( coe1 ‘ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐴 ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
| 47 |
46
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ‘ 𝑗 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐴 ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ‘ 𝑗 ) ) |
| 48 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
| 49 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 50 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑅 ∈ Ring ) |
| 51 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 52 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 : ( 0 ..^ 𝑁 ) ⟶ 𝐵 ) |
| 53 |
52
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ 𝐵 ) |
| 54 |
53
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝐴 ‘ 𝑖 ) ∈ 𝐵 ) |
| 55 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
| 56 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑗 ) ) |
| 57 |
1 12 48 49 50 2 51 6 54 22 55 56
|
gsummoncoe1fzo |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐴 ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ‘ 𝑗 ) = ( 𝐴 ‘ 𝑗 ) ) |
| 58 |
47 57
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝐴 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ‘ 𝑗 ) = ( 𝐴 ‘ 𝑗 ) ) |
| 59 |
23 31 58
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 ‘ 𝑗 ) = ( ( ( coe1 ‘ 𝑍 ) ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑗 ) ) |
| 60 |
10 21 59
|
eqfnfvd |
⊢ ( 𝜑 → 𝐴 = ( ( coe1 ‘ 𝑍 ) ↾ ( 0 ..^ 𝑁 ) ) ) |
| 61 |
1 7 6
|
coe1z |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 𝑍 ) = ( ℕ0 × { 0 } ) ) |
| 62 |
4 61
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ 𝑍 ) = ( ℕ0 × { 0 } ) ) |
| 63 |
62
|
reseq1d |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑍 ) ↾ ( 0 ..^ 𝑁 ) ) = ( ( ℕ0 × { 0 } ) ↾ ( 0 ..^ 𝑁 ) ) ) |
| 64 |
60 63
|
eqtrd |
⊢ ( 𝜑 → 𝐴 = ( ( ℕ0 × { 0 } ) ↾ ( 0 ..^ 𝑁 ) ) ) |
| 65 |
|
xpssres |
⊢ ( ( 0 ..^ 𝑁 ) ⊆ ℕ0 → ( ( ℕ0 × { 0 } ) ↾ ( 0 ..^ 𝑁 ) ) = ( ( 0 ..^ 𝑁 ) × { 0 } ) ) |
| 66 |
19 65
|
ax-mp |
⊢ ( ( ℕ0 × { 0 } ) ↾ ( 0 ..^ 𝑁 ) ) = ( ( 0 ..^ 𝑁 ) × { 0 } ) |
| 67 |
64 66
|
eqtrdi |
⊢ ( 𝜑 → 𝐴 = ( ( 0 ..^ 𝑁 ) × { 0 } ) ) |