Metamath Proof Explorer


Theorem gsummoncoe1fz

Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. See gsummoncoe1fzo . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummoncoe1fz.1
|- P = ( Poly1 ` R )
gsummoncoe1fz.2
|- B = ( Base ` P )
gsummoncoe1fz.3
|- X = ( var1 ` R )
gsummoncoe1fz.4
|- .^ = ( .g ` ( mulGrp ` P ) )
gsummoncoe1fz.5
|- ( ph -> R e. Ring )
gsummoncoe1fz.6
|- K = ( Base ` R )
gsummoncoe1fz.7
|- .* = ( .s ` P )
gsummoncoe1fz.8
|- ( ph -> D e. NN0 )
gsummoncoe1fz.9
|- ( ph -> A. k e. ( 0 ... D ) A e. K )
gsummoncoe1fz.10
|- ( ph -> L e. ( 0 ... D ) )
gsummoncoe1fz.11
|- ( k = L -> A = C )
Assertion gsummoncoe1fz
|- ( ph -> ( ( coe1 ` ( P gsum ( k e. ( 0 ... D ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = C )

Proof

Step Hyp Ref Expression
1 gsummoncoe1fz.1
 |-  P = ( Poly1 ` R )
2 gsummoncoe1fz.2
 |-  B = ( Base ` P )
3 gsummoncoe1fz.3
 |-  X = ( var1 ` R )
4 gsummoncoe1fz.4
 |-  .^ = ( .g ` ( mulGrp ` P ) )
5 gsummoncoe1fz.5
 |-  ( ph -> R e. Ring )
6 gsummoncoe1fz.6
 |-  K = ( Base ` R )
7 gsummoncoe1fz.7
 |-  .* = ( .s ` P )
8 gsummoncoe1fz.8
 |-  ( ph -> D e. NN0 )
9 gsummoncoe1fz.9
 |-  ( ph -> A. k e. ( 0 ... D ) A e. K )
10 gsummoncoe1fz.10
 |-  ( ph -> L e. ( 0 ... D ) )
11 gsummoncoe1fz.11
 |-  ( k = L -> A = C )
12 8 nn0zd
 |-  ( ph -> D e. ZZ )
13 fzval3
 |-  ( D e. ZZ -> ( 0 ... D ) = ( 0 ..^ ( D + 1 ) ) )
14 12 13 syl
 |-  ( ph -> ( 0 ... D ) = ( 0 ..^ ( D + 1 ) ) )
15 14 mpteq1d
 |-  ( ph -> ( k e. ( 0 ... D ) |-> ( A .* ( k .^ X ) ) ) = ( k e. ( 0 ..^ ( D + 1 ) ) |-> ( A .* ( k .^ X ) ) ) )
16 15 oveq2d
 |-  ( ph -> ( P gsum ( k e. ( 0 ... D ) |-> ( A .* ( k .^ X ) ) ) ) = ( P gsum ( k e. ( 0 ..^ ( D + 1 ) ) |-> ( A .* ( k .^ X ) ) ) ) )
17 16 fveq2d
 |-  ( ph -> ( coe1 ` ( P gsum ( k e. ( 0 ... D ) |-> ( A .* ( k .^ X ) ) ) ) ) = ( coe1 ` ( P gsum ( k e. ( 0 ..^ ( D + 1 ) ) |-> ( A .* ( k .^ X ) ) ) ) ) )
18 17 fveq1d
 |-  ( ph -> ( ( coe1 ` ( P gsum ( k e. ( 0 ... D ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = ( ( coe1 ` ( P gsum ( k e. ( 0 ..^ ( D + 1 ) ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) )
19 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
20 9 14 raleqtrdv
 |-  ( ph -> A. k e. ( 0 ..^ ( D + 1 ) ) A e. K )
21 10 14 eleqtrd
 |-  ( ph -> L e. ( 0 ..^ ( D + 1 ) ) )
22 peano2nn0
 |-  ( D e. NN0 -> ( D + 1 ) e. NN0 )
23 8 22 syl
 |-  ( ph -> ( D + 1 ) e. NN0 )
24 1 2 3 4 5 6 7 19 20 21 23 11 gsummoncoe1fzo
 |-  ( ph -> ( ( coe1 ` ( P gsum ( k e. ( 0 ..^ ( D + 1 ) ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = C )
25 18 24 eqtrd
 |-  ( ph -> ( ( coe1 ` ( P gsum ( k e. ( 0 ... D ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = C )