| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummoncoe1fz.1 |
|- P = ( Poly1 ` R ) |
| 2 |
|
gsummoncoe1fz.2 |
|- B = ( Base ` P ) |
| 3 |
|
gsummoncoe1fz.3 |
|- X = ( var1 ` R ) |
| 4 |
|
gsummoncoe1fz.4 |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
| 5 |
|
gsummoncoe1fz.5 |
|- ( ph -> R e. Ring ) |
| 6 |
|
gsummoncoe1fz.6 |
|- K = ( Base ` R ) |
| 7 |
|
gsummoncoe1fz.7 |
|- .* = ( .s ` P ) |
| 8 |
|
gsummoncoe1fz.8 |
|- ( ph -> D e. NN0 ) |
| 9 |
|
gsummoncoe1fz.9 |
|- ( ph -> A. k e. ( 0 ... D ) A e. K ) |
| 10 |
|
gsummoncoe1fz.10 |
|- ( ph -> L e. ( 0 ... D ) ) |
| 11 |
|
gsummoncoe1fz.11 |
|- ( k = L -> A = C ) |
| 12 |
8
|
nn0zd |
|- ( ph -> D e. ZZ ) |
| 13 |
|
fzval3 |
|- ( D e. ZZ -> ( 0 ... D ) = ( 0 ..^ ( D + 1 ) ) ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( 0 ... D ) = ( 0 ..^ ( D + 1 ) ) ) |
| 15 |
14
|
mpteq1d |
|- ( ph -> ( k e. ( 0 ... D ) |-> ( A .* ( k .^ X ) ) ) = ( k e. ( 0 ..^ ( D + 1 ) ) |-> ( A .* ( k .^ X ) ) ) ) |
| 16 |
15
|
oveq2d |
|- ( ph -> ( P gsum ( k e. ( 0 ... D ) |-> ( A .* ( k .^ X ) ) ) ) = ( P gsum ( k e. ( 0 ..^ ( D + 1 ) ) |-> ( A .* ( k .^ X ) ) ) ) ) |
| 17 |
16
|
fveq2d |
|- ( ph -> ( coe1 ` ( P gsum ( k e. ( 0 ... D ) |-> ( A .* ( k .^ X ) ) ) ) ) = ( coe1 ` ( P gsum ( k e. ( 0 ..^ ( D + 1 ) ) |-> ( A .* ( k .^ X ) ) ) ) ) ) |
| 18 |
17
|
fveq1d |
|- ( ph -> ( ( coe1 ` ( P gsum ( k e. ( 0 ... D ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = ( ( coe1 ` ( P gsum ( k e. ( 0 ..^ ( D + 1 ) ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) ) |
| 19 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 20 |
9 14
|
raleqtrdv |
|- ( ph -> A. k e. ( 0 ..^ ( D + 1 ) ) A e. K ) |
| 21 |
10 14
|
eleqtrd |
|- ( ph -> L e. ( 0 ..^ ( D + 1 ) ) ) |
| 22 |
|
peano2nn0 |
|- ( D e. NN0 -> ( D + 1 ) e. NN0 ) |
| 23 |
8 22
|
syl |
|- ( ph -> ( D + 1 ) e. NN0 ) |
| 24 |
1 2 3 4 5 6 7 19 20 21 23 11
|
gsummoncoe1fzo |
|- ( ph -> ( ( coe1 ` ( P gsum ( k e. ( 0 ..^ ( D + 1 ) ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = C ) |
| 25 |
18 24
|
eqtrd |
|- ( ph -> ( ( coe1 ` ( P gsum ( k e. ( 0 ... D ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = C ) |