Metamath Proof Explorer


Theorem gsummoncoe1fz

Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. See gsummoncoe1fzo . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummoncoe1fz.1 P = Poly 1 R
gsummoncoe1fz.2 B = Base P
gsummoncoe1fz.3 X = var 1 R
gsummoncoe1fz.4 × ˙ = mulGrp P
gsummoncoe1fz.5 φ R Ring
gsummoncoe1fz.6 K = Base R
gsummoncoe1fz.7 ˙ = P
gsummoncoe1fz.8 φ D 0
gsummoncoe1fz.9 φ k 0 D A K
gsummoncoe1fz.10 φ L 0 D
gsummoncoe1fz.11 k = L A = C
Assertion gsummoncoe1fz φ coe 1 P k = 0 D A ˙ k × ˙ X L = C

Proof

Step Hyp Ref Expression
1 gsummoncoe1fz.1 P = Poly 1 R
2 gsummoncoe1fz.2 B = Base P
3 gsummoncoe1fz.3 X = var 1 R
4 gsummoncoe1fz.4 × ˙ = mulGrp P
5 gsummoncoe1fz.5 φ R Ring
6 gsummoncoe1fz.6 K = Base R
7 gsummoncoe1fz.7 ˙ = P
8 gsummoncoe1fz.8 φ D 0
9 gsummoncoe1fz.9 φ k 0 D A K
10 gsummoncoe1fz.10 φ L 0 D
11 gsummoncoe1fz.11 k = L A = C
12 8 nn0zd φ D
13 fzval3 D 0 D = 0 ..^ D + 1
14 12 13 syl φ 0 D = 0 ..^ D + 1
15 14 mpteq1d φ k 0 D A ˙ k × ˙ X = k 0 ..^ D + 1 A ˙ k × ˙ X
16 15 oveq2d φ P k = 0 D A ˙ k × ˙ X = P k 0 ..^ D + 1 A ˙ k × ˙ X
17 16 fveq2d φ coe 1 P k = 0 D A ˙ k × ˙ X = coe 1 P k 0 ..^ D + 1 A ˙ k × ˙ X
18 17 fveq1d φ coe 1 P k = 0 D A ˙ k × ˙ X L = coe 1 P k 0 ..^ D + 1 A ˙ k × ˙ X L
19 eqid 0 R = 0 R
20 9 14 raleqtrdv φ k 0 ..^ D + 1 A K
21 10 14 eleqtrd φ L 0 ..^ D + 1
22 peano2nn0 D 0 D + 1 0
23 8 22 syl φ D + 1 0
24 1 2 3 4 5 6 7 19 20 21 23 11 gsummoncoe1fzo φ coe 1 P k 0 ..^ D + 1 A ˙ k × ˙ X L = C
25 18 24 eqtrd φ coe 1 P k = 0 D A ˙ k × ˙ X L = C