| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptres2.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsummptres2.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsummptres2.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
gsummptres2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
gsummptres2.0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑆 ) ) → 𝑌 = 0 ) |
| 6 |
|
gsummptres2.1 |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 7 |
|
gsummptres2.y |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) |
| 8 |
|
gsummptres2.2 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐴 ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 10 |
4
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) ∈ V ) |
| 11 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) ) |
| 13 |
2
|
fvexi |
⊢ 0 ∈ V |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 15 |
5 4
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) supp 0 ) ⊆ 𝑆 ) |
| 16 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) ∈ V ∧ Fun ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) ∧ 0 ∈ V ) ∧ ( 𝑆 ∈ Fin ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) supp 0 ) ⊆ 𝑆 ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) finSupp 0 ) |
| 17 |
10 12 14 6 15 16
|
syl32anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) finSupp 0 ) |
| 18 |
|
disjdif |
⊢ ( 𝑆 ∩ ( 𝐴 ∖ 𝑆 ) ) = ∅ |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝑆 ∩ ( 𝐴 ∖ 𝑆 ) ) = ∅ ) |
| 20 |
|
undif |
⊢ ( 𝑆 ⊆ 𝐴 ↔ ( 𝑆 ∪ ( 𝐴 ∖ 𝑆 ) ) = 𝐴 ) |
| 21 |
8 20
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∪ ( 𝐴 ∖ 𝑆 ) ) = 𝐴 ) |
| 22 |
21
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝑆 ∪ ( 𝐴 ∖ 𝑆 ) ) ) |
| 23 |
1 2 9 3 4 7 17 19 22
|
gsumsplit2 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴 ∖ 𝑆 ) ↦ 𝑌 ) ) ) ) |
| 24 |
5
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∖ 𝑆 ) ↦ 𝑌 ) = ( 𝑥 ∈ ( 𝐴 ∖ 𝑆 ) ↦ 0 ) ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴 ∖ 𝑆 ) ↦ 𝑌 ) ) = ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴 ∖ 𝑆 ) ↦ 0 ) ) ) |
| 26 |
3
|
cmnmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 27 |
4
|
difexd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝑆 ) ∈ V ) |
| 28 |
2
|
gsumz |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 ∖ 𝑆 ) ∈ V ) → ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴 ∖ 𝑆 ) ↦ 0 ) ) = 0 ) |
| 29 |
26 27 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴 ∖ 𝑆 ) ↦ 0 ) ) = 0 ) |
| 30 |
25 29
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴 ∖ 𝑆 ) ↦ 𝑌 ) ) = 0 ) |
| 31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴 ∖ 𝑆 ) ↦ 𝑌 ) ) ) = ( ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ( +g ‘ 𝐺 ) 0 ) ) |
| 32 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑌 ∈ 𝐵 ) |
| 33 |
|
ssralv |
⊢ ( 𝑆 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝑌 ∈ 𝐵 → ∀ 𝑥 ∈ 𝑆 𝑌 ∈ 𝐵 ) ) |
| 34 |
8 32 33
|
sylc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝑌 ∈ 𝐵 ) |
| 35 |
1 3 6 34
|
gsummptcl |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ∈ 𝐵 ) |
| 36 |
1 9 2
|
mndrid |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ∈ 𝐵 ) → ( ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ( +g ‘ 𝐺 ) 0 ) = ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ) |
| 37 |
26 35 36
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ( +g ‘ 𝐺 ) 0 ) = ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ) |
| 38 |
23 31 37
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ) |