Metamath Proof Explorer


Theorem gsummptres2

Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024)

Ref Expression
Hypotheses gsummptres2.b 𝐵 = ( Base ‘ 𝐺 )
gsummptres2.z 0 = ( 0g𝐺 )
gsummptres2.g ( 𝜑𝐺 ∈ CMnd )
gsummptres2.a ( 𝜑𝐴𝑉 )
gsummptres2.0 ( ( 𝜑𝑥 ∈ ( 𝐴𝑆 ) ) → 𝑌 = 0 )
gsummptres2.1 ( 𝜑𝑆 ∈ Fin )
gsummptres2.y ( ( 𝜑𝑥𝐴 ) → 𝑌𝐵 )
gsummptres2.2 ( 𝜑𝑆𝐴 )
Assertion gsummptres2 ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴𝑌 ) ) = ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 gsummptres2.b 𝐵 = ( Base ‘ 𝐺 )
2 gsummptres2.z 0 = ( 0g𝐺 )
3 gsummptres2.g ( 𝜑𝐺 ∈ CMnd )
4 gsummptres2.a ( 𝜑𝐴𝑉 )
5 gsummptres2.0 ( ( 𝜑𝑥 ∈ ( 𝐴𝑆 ) ) → 𝑌 = 0 )
6 gsummptres2.1 ( 𝜑𝑆 ∈ Fin )
7 gsummptres2.y ( ( 𝜑𝑥𝐴 ) → 𝑌𝐵 )
8 gsummptres2.2 ( 𝜑𝑆𝐴 )
9 eqid ( +g𝐺 ) = ( +g𝐺 )
10 4 mptexd ( 𝜑 → ( 𝑥𝐴𝑌 ) ∈ V )
11 funmpt Fun ( 𝑥𝐴𝑌 )
12 11 a1i ( 𝜑 → Fun ( 𝑥𝐴𝑌 ) )
13 2 fvexi 0 ∈ V
14 13 a1i ( 𝜑0 ∈ V )
15 5 4 suppss2 ( 𝜑 → ( ( 𝑥𝐴𝑌 ) supp 0 ) ⊆ 𝑆 )
16 suppssfifsupp ( ( ( ( 𝑥𝐴𝑌 ) ∈ V ∧ Fun ( 𝑥𝐴𝑌 ) ∧ 0 ∈ V ) ∧ ( 𝑆 ∈ Fin ∧ ( ( 𝑥𝐴𝑌 ) supp 0 ) ⊆ 𝑆 ) ) → ( 𝑥𝐴𝑌 ) finSupp 0 )
17 10 12 14 6 15 16 syl32anc ( 𝜑 → ( 𝑥𝐴𝑌 ) finSupp 0 )
18 disjdif ( 𝑆 ∩ ( 𝐴𝑆 ) ) = ∅
19 18 a1i ( 𝜑 → ( 𝑆 ∩ ( 𝐴𝑆 ) ) = ∅ )
20 undif ( 𝑆𝐴 ↔ ( 𝑆 ∪ ( 𝐴𝑆 ) ) = 𝐴 )
21 8 20 sylib ( 𝜑 → ( 𝑆 ∪ ( 𝐴𝑆 ) ) = 𝐴 )
22 21 eqcomd ( 𝜑𝐴 = ( 𝑆 ∪ ( 𝐴𝑆 ) ) )
23 1 2 9 3 4 7 17 19 22 gsumsplit2 ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴𝑌 ) ) = ( ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴𝑆 ) ↦ 𝑌 ) ) ) )
24 5 mpteq2dva ( 𝜑 → ( 𝑥 ∈ ( 𝐴𝑆 ) ↦ 𝑌 ) = ( 𝑥 ∈ ( 𝐴𝑆 ) ↦ 0 ) )
25 24 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴𝑆 ) ↦ 𝑌 ) ) = ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴𝑆 ) ↦ 0 ) ) )
26 3 cmnmndd ( 𝜑𝐺 ∈ Mnd )
27 difexg ( 𝐴𝑉 → ( 𝐴𝑆 ) ∈ V )
28 4 27 syl ( 𝜑 → ( 𝐴𝑆 ) ∈ V )
29 2 gsumz ( ( 𝐺 ∈ Mnd ∧ ( 𝐴𝑆 ) ∈ V ) → ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴𝑆 ) ↦ 0 ) ) = 0 )
30 26 28 29 syl2anc ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴𝑆 ) ↦ 0 ) ) = 0 )
31 25 30 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴𝑆 ) ↦ 𝑌 ) ) = 0 )
32 31 oveq2d ( 𝜑 → ( ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴𝑆 ) ↦ 𝑌 ) ) ) = ( ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) ( +g𝐺 ) 0 ) )
33 7 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝑌𝐵 )
34 ssralv ( 𝑆𝐴 → ( ∀ 𝑥𝐴 𝑌𝐵 → ∀ 𝑥𝑆 𝑌𝐵 ) )
35 8 33 34 sylc ( 𝜑 → ∀ 𝑥𝑆 𝑌𝐵 )
36 1 3 6 35 gsummptcl ( 𝜑 → ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) ∈ 𝐵 )
37 1 9 2 mndrid ( ( 𝐺 ∈ Mnd ∧ ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) ∈ 𝐵 ) → ( ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) ( +g𝐺 ) 0 ) = ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) )
38 26 36 37 syl2anc ( 𝜑 → ( ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) ( +g𝐺 ) 0 ) = ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) )
39 23 32 38 3eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴𝑌 ) ) = ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) )