Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptres2.b |
|- B = ( Base ` G ) |
2 |
|
gsummptres2.z |
|- .0. = ( 0g ` G ) |
3 |
|
gsummptres2.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsummptres2.a |
|- ( ph -> A e. V ) |
5 |
|
gsummptres2.0 |
|- ( ( ph /\ x e. ( A \ S ) ) -> Y = .0. ) |
6 |
|
gsummptres2.1 |
|- ( ph -> S e. Fin ) |
7 |
|
gsummptres2.y |
|- ( ( ph /\ x e. A ) -> Y e. B ) |
8 |
|
gsummptres2.2 |
|- ( ph -> S C_ A ) |
9 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
10 |
4
|
mptexd |
|- ( ph -> ( x e. A |-> Y ) e. _V ) |
11 |
|
funmpt |
|- Fun ( x e. A |-> Y ) |
12 |
11
|
a1i |
|- ( ph -> Fun ( x e. A |-> Y ) ) |
13 |
2
|
fvexi |
|- .0. e. _V |
14 |
13
|
a1i |
|- ( ph -> .0. e. _V ) |
15 |
5 4
|
suppss2 |
|- ( ph -> ( ( x e. A |-> Y ) supp .0. ) C_ S ) |
16 |
|
suppssfifsupp |
|- ( ( ( ( x e. A |-> Y ) e. _V /\ Fun ( x e. A |-> Y ) /\ .0. e. _V ) /\ ( S e. Fin /\ ( ( x e. A |-> Y ) supp .0. ) C_ S ) ) -> ( x e. A |-> Y ) finSupp .0. ) |
17 |
10 12 14 6 15 16
|
syl32anc |
|- ( ph -> ( x e. A |-> Y ) finSupp .0. ) |
18 |
|
disjdif |
|- ( S i^i ( A \ S ) ) = (/) |
19 |
18
|
a1i |
|- ( ph -> ( S i^i ( A \ S ) ) = (/) ) |
20 |
|
undif |
|- ( S C_ A <-> ( S u. ( A \ S ) ) = A ) |
21 |
8 20
|
sylib |
|- ( ph -> ( S u. ( A \ S ) ) = A ) |
22 |
21
|
eqcomd |
|- ( ph -> A = ( S u. ( A \ S ) ) ) |
23 |
1 2 9 3 4 7 17 19 22
|
gsumsplit2 |
|- ( ph -> ( G gsum ( x e. A |-> Y ) ) = ( ( G gsum ( x e. S |-> Y ) ) ( +g ` G ) ( G gsum ( x e. ( A \ S ) |-> Y ) ) ) ) |
24 |
5
|
mpteq2dva |
|- ( ph -> ( x e. ( A \ S ) |-> Y ) = ( x e. ( A \ S ) |-> .0. ) ) |
25 |
24
|
oveq2d |
|- ( ph -> ( G gsum ( x e. ( A \ S ) |-> Y ) ) = ( G gsum ( x e. ( A \ S ) |-> .0. ) ) ) |
26 |
3
|
cmnmndd |
|- ( ph -> G e. Mnd ) |
27 |
4
|
difexd |
|- ( ph -> ( A \ S ) e. _V ) |
28 |
2
|
gsumz |
|- ( ( G e. Mnd /\ ( A \ S ) e. _V ) -> ( G gsum ( x e. ( A \ S ) |-> .0. ) ) = .0. ) |
29 |
26 27 28
|
syl2anc |
|- ( ph -> ( G gsum ( x e. ( A \ S ) |-> .0. ) ) = .0. ) |
30 |
25 29
|
eqtrd |
|- ( ph -> ( G gsum ( x e. ( A \ S ) |-> Y ) ) = .0. ) |
31 |
30
|
oveq2d |
|- ( ph -> ( ( G gsum ( x e. S |-> Y ) ) ( +g ` G ) ( G gsum ( x e. ( A \ S ) |-> Y ) ) ) = ( ( G gsum ( x e. S |-> Y ) ) ( +g ` G ) .0. ) ) |
32 |
7
|
ralrimiva |
|- ( ph -> A. x e. A Y e. B ) |
33 |
|
ssralv |
|- ( S C_ A -> ( A. x e. A Y e. B -> A. x e. S Y e. B ) ) |
34 |
8 32 33
|
sylc |
|- ( ph -> A. x e. S Y e. B ) |
35 |
1 3 6 34
|
gsummptcl |
|- ( ph -> ( G gsum ( x e. S |-> Y ) ) e. B ) |
36 |
1 9 2
|
mndrid |
|- ( ( G e. Mnd /\ ( G gsum ( x e. S |-> Y ) ) e. B ) -> ( ( G gsum ( x e. S |-> Y ) ) ( +g ` G ) .0. ) = ( G gsum ( x e. S |-> Y ) ) ) |
37 |
26 35 36
|
syl2anc |
|- ( ph -> ( ( G gsum ( x e. S |-> Y ) ) ( +g ` G ) .0. ) = ( G gsum ( x e. S |-> Y ) ) ) |
38 |
23 31 37
|
3eqtrd |
|- ( ph -> ( G gsum ( x e. A |-> Y ) ) = ( G gsum ( x e. S |-> Y ) ) ) |