| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzresunsn.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumzresunsn.p |
|- .+ = ( +g ` G ) |
| 3 |
|
gsumzresunsn.z |
|- Z = ( Cntz ` G ) |
| 4 |
|
gsumzresunsn.y |
|- Y = ( F ` X ) |
| 5 |
|
gsumzresunsn.f |
|- ( ph -> F : C --> B ) |
| 6 |
|
gsumzresunsn.1 |
|- ( ph -> A C_ C ) |
| 7 |
|
gsumzresunsn.g |
|- ( ph -> G e. Mnd ) |
| 8 |
|
gsumzresunsn.a |
|- ( ph -> A e. Fin ) |
| 9 |
|
gsumzresunsn.2 |
|- ( ph -> -. X e. A ) |
| 10 |
|
gsumzresunsn.3 |
|- ( ph -> X e. C ) |
| 11 |
|
gsumzresunsn.4 |
|- ( ph -> Y e. B ) |
| 12 |
|
gsumzresunsn.5 |
|- ( ph -> ( F " ( A u. { X } ) ) C_ ( Z ` ( F " ( A u. { X } ) ) ) ) |
| 13 |
|
eqid |
|- ( x e. ( A u. { X } ) |-> ( F ` x ) ) = ( x e. ( A u. { X } ) |-> ( F ` x ) ) |
| 14 |
|
df-ima |
|- ( F " ( A u. { X } ) ) = ran ( F |` ( A u. { X } ) ) |
| 15 |
10
|
snssd |
|- ( ph -> { X } C_ C ) |
| 16 |
6 15
|
unssd |
|- ( ph -> ( A u. { X } ) C_ C ) |
| 17 |
5 16
|
feqresmpt |
|- ( ph -> ( F |` ( A u. { X } ) ) = ( x e. ( A u. { X } ) |-> ( F ` x ) ) ) |
| 18 |
17
|
rneqd |
|- ( ph -> ran ( F |` ( A u. { X } ) ) = ran ( x e. ( A u. { X } ) |-> ( F ` x ) ) ) |
| 19 |
14 18
|
eqtrid |
|- ( ph -> ( F " ( A u. { X } ) ) = ran ( x e. ( A u. { X } ) |-> ( F ` x ) ) ) |
| 20 |
19
|
fveq2d |
|- ( ph -> ( Z ` ( F " ( A u. { X } ) ) ) = ( Z ` ran ( x e. ( A u. { X } ) |-> ( F ` x ) ) ) ) |
| 21 |
12 19 20
|
3sstr3d |
|- ( ph -> ran ( x e. ( A u. { X } ) |-> ( F ` x ) ) C_ ( Z ` ran ( x e. ( A u. { X } ) |-> ( F ` x ) ) ) ) |
| 22 |
5
|
adantr |
|- ( ( ph /\ x e. A ) -> F : C --> B ) |
| 23 |
6
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. C ) |
| 24 |
22 23
|
ffvelcdmd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. B ) |
| 25 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
| 26 |
25
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( F ` x ) = ( F ` X ) ) |
| 27 |
26 4
|
eqtr4di |
|- ( ( ph /\ x = X ) -> ( F ` x ) = Y ) |
| 28 |
1 2 3 13 7 8 21 24 10 9 11 27
|
gsumzunsnd |
|- ( ph -> ( G gsum ( x e. ( A u. { X } ) |-> ( F ` x ) ) ) = ( ( G gsum ( x e. A |-> ( F ` x ) ) ) .+ Y ) ) |
| 29 |
17
|
oveq2d |
|- ( ph -> ( G gsum ( F |` ( A u. { X } ) ) ) = ( G gsum ( x e. ( A u. { X } ) |-> ( F ` x ) ) ) ) |
| 30 |
5 6
|
feqresmpt |
|- ( ph -> ( F |` A ) = ( x e. A |-> ( F ` x ) ) ) |
| 31 |
30
|
oveq2d |
|- ( ph -> ( G gsum ( F |` A ) ) = ( G gsum ( x e. A |-> ( F ` x ) ) ) ) |
| 32 |
31
|
oveq1d |
|- ( ph -> ( ( G gsum ( F |` A ) ) .+ Y ) = ( ( G gsum ( x e. A |-> ( F ` x ) ) ) .+ Y ) ) |
| 33 |
28 29 32
|
3eqtr4d |
|- ( ph -> ( G gsum ( F |` ( A u. { X } ) ) ) = ( ( G gsum ( F |` A ) ) .+ Y ) ) |