| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumpart.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumpart.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumpart.g |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsumpart.a |
|- ( ph -> A e. V ) |
| 5 |
|
gsumpart.x |
|- ( ph -> X e. W ) |
| 6 |
|
gsumpart.f |
|- ( ph -> F : A --> B ) |
| 7 |
|
gsumpart.w |
|- ( ph -> F finSupp .0. ) |
| 8 |
|
gsumpart.1 |
|- ( ph -> Disj_ x e. X C ) |
| 9 |
|
gsumpart.2 |
|- ( ph -> U_ x e. X C = A ) |
| 10 |
|
eqid |
|- U_ x e. X ( { x } X. C ) = U_ x e. X ( { x } X. C ) |
| 11 |
10 4 5 8 9
|
2ndresdjuf1o |
|- ( ph -> ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) -1-1-onto-> A ) |
| 12 |
1 2 3 4 6 7 11
|
gsumf1o |
|- ( ph -> ( G gsum F ) = ( G gsum ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) ) ) |
| 13 |
|
vsnex |
|- { x } e. _V |
| 14 |
13
|
a1i |
|- ( ( ph /\ x e. X ) -> { x } e. _V ) |
| 15 |
4
|
adantr |
|- ( ( ph /\ x e. X ) -> A e. V ) |
| 16 |
|
ssidd |
|- ( ph -> A C_ A ) |
| 17 |
9 16
|
eqsstrd |
|- ( ph -> U_ x e. X C C_ A ) |
| 18 |
|
iunss |
|- ( U_ x e. X C C_ A <-> A. x e. X C C_ A ) |
| 19 |
17 18
|
sylib |
|- ( ph -> A. x e. X C C_ A ) |
| 20 |
19
|
r19.21bi |
|- ( ( ph /\ x e. X ) -> C C_ A ) |
| 21 |
15 20
|
ssexd |
|- ( ( ph /\ x e. X ) -> C e. _V ) |
| 22 |
14 21
|
xpexd |
|- ( ( ph /\ x e. X ) -> ( { x } X. C ) e. _V ) |
| 23 |
22
|
ralrimiva |
|- ( ph -> A. x e. X ( { x } X. C ) e. _V ) |
| 24 |
|
iunexg |
|- ( ( X e. W /\ A. x e. X ( { x } X. C ) e. _V ) -> U_ x e. X ( { x } X. C ) e. _V ) |
| 25 |
5 23 24
|
syl2anc |
|- ( ph -> U_ x e. X ( { x } X. C ) e. _V ) |
| 26 |
|
relxp |
|- Rel ( { x } X. C ) |
| 27 |
26
|
a1i |
|- ( ( ph /\ x e. X ) -> Rel ( { x } X. C ) ) |
| 28 |
27
|
ralrimiva |
|- ( ph -> A. x e. X Rel ( { x } X. C ) ) |
| 29 |
|
reliun |
|- ( Rel U_ x e. X ( { x } X. C ) <-> A. x e. X Rel ( { x } X. C ) ) |
| 30 |
28 29
|
sylibr |
|- ( ph -> Rel U_ x e. X ( { x } X. C ) ) |
| 31 |
|
dmiun |
|- dom U_ x e. X ( { x } X. C ) = U_ x e. X dom ( { x } X. C ) |
| 32 |
|
dmxpss |
|- dom ( { x } X. C ) C_ { x } |
| 33 |
32
|
rgenw |
|- A. x e. X dom ( { x } X. C ) C_ { x } |
| 34 |
|
ss2iun |
|- ( A. x e. X dom ( { x } X. C ) C_ { x } -> U_ x e. X dom ( { x } X. C ) C_ U_ x e. X { x } ) |
| 35 |
33 34
|
ax-mp |
|- U_ x e. X dom ( { x } X. C ) C_ U_ x e. X { x } |
| 36 |
31 35
|
eqsstri |
|- dom U_ x e. X ( { x } X. C ) C_ U_ x e. X { x } |
| 37 |
|
iunid |
|- U_ x e. X { x } = X |
| 38 |
36 37
|
sseqtri |
|- dom U_ x e. X ( { x } X. C ) C_ X |
| 39 |
38
|
a1i |
|- ( ph -> dom U_ x e. X ( { x } X. C ) C_ X ) |
| 40 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
| 41 |
|
fof |
|- ( 2nd : _V -onto-> _V -> 2nd : _V --> _V ) |
| 42 |
40 41
|
ax-mp |
|- 2nd : _V --> _V |
| 43 |
|
ssv |
|- U_ x e. X ( { x } X. C ) C_ _V |
| 44 |
|
fssres |
|- ( ( 2nd : _V --> _V /\ U_ x e. X ( { x } X. C ) C_ _V ) -> ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> _V ) |
| 45 |
42 43 44
|
mp2an |
|- ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> _V |
| 46 |
|
ffn |
|- ( ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> _V -> ( 2nd |` U_ x e. X ( { x } X. C ) ) Fn U_ x e. X ( { x } X. C ) ) |
| 47 |
45 46
|
mp1i |
|- ( ph -> ( 2nd |` U_ x e. X ( { x } X. C ) ) Fn U_ x e. X ( { x } X. C ) ) |
| 48 |
|
djussxp2 |
|- U_ x e. X ( { x } X. C ) C_ ( X X. U_ x e. X C ) |
| 49 |
|
imass2 |
|- ( U_ x e. X ( { x } X. C ) C_ ( X X. U_ x e. X C ) -> ( 2nd " U_ x e. X ( { x } X. C ) ) C_ ( 2nd " ( X X. U_ x e. X C ) ) ) |
| 50 |
48 49
|
ax-mp |
|- ( 2nd " U_ x e. X ( { x } X. C ) ) C_ ( 2nd " ( X X. U_ x e. X C ) ) |
| 51 |
|
ima0 |
|- ( 2nd " (/) ) = (/) |
| 52 |
|
xpeq1 |
|- ( X = (/) -> ( X X. U_ x e. X C ) = ( (/) X. U_ x e. X C ) ) |
| 53 |
|
0xp |
|- ( (/) X. U_ x e. X C ) = (/) |
| 54 |
52 53
|
eqtrdi |
|- ( X = (/) -> ( X X. U_ x e. X C ) = (/) ) |
| 55 |
54
|
imaeq2d |
|- ( X = (/) -> ( 2nd " ( X X. U_ x e. X C ) ) = ( 2nd " (/) ) ) |
| 56 |
|
iuneq1 |
|- ( X = (/) -> U_ x e. X C = U_ x e. (/) C ) |
| 57 |
|
0iun |
|- U_ x e. (/) C = (/) |
| 58 |
56 57
|
eqtrdi |
|- ( X = (/) -> U_ x e. X C = (/) ) |
| 59 |
51 55 58
|
3eqtr4a |
|- ( X = (/) -> ( 2nd " ( X X. U_ x e. X C ) ) = U_ x e. X C ) |
| 60 |
59
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( 2nd " ( X X. U_ x e. X C ) ) = U_ x e. X C ) |
| 61 |
|
2ndimaxp |
|- ( X =/= (/) -> ( 2nd " ( X X. U_ x e. X C ) ) = U_ x e. X C ) |
| 62 |
61
|
adantl |
|- ( ( ph /\ X =/= (/) ) -> ( 2nd " ( X X. U_ x e. X C ) ) = U_ x e. X C ) |
| 63 |
60 62
|
pm2.61dane |
|- ( ph -> ( 2nd " ( X X. U_ x e. X C ) ) = U_ x e. X C ) |
| 64 |
63 9
|
eqtrd |
|- ( ph -> ( 2nd " ( X X. U_ x e. X C ) ) = A ) |
| 65 |
50 64
|
sseqtrid |
|- ( ph -> ( 2nd " U_ x e. X ( { x } X. C ) ) C_ A ) |
| 66 |
|
resssxp |
|- ( ( 2nd " U_ x e. X ( { x } X. C ) ) C_ A <-> ( 2nd |` U_ x e. X ( { x } X. C ) ) C_ ( U_ x e. X ( { x } X. C ) X. A ) ) |
| 67 |
65 66
|
sylib |
|- ( ph -> ( 2nd |` U_ x e. X ( { x } X. C ) ) C_ ( U_ x e. X ( { x } X. C ) X. A ) ) |
| 68 |
|
dff2 |
|- ( ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> A <-> ( ( 2nd |` U_ x e. X ( { x } X. C ) ) Fn U_ x e. X ( { x } X. C ) /\ ( 2nd |` U_ x e. X ( { x } X. C ) ) C_ ( U_ x e. X ( { x } X. C ) X. A ) ) ) |
| 69 |
47 67 68
|
sylanbrc |
|- ( ph -> ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> A ) |
| 70 |
6 69
|
fcod |
|- ( ph -> ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) : U_ x e. X ( { x } X. C ) --> B ) |
| 71 |
10 4 5 8 9
|
2ndresdju |
|- ( ph -> ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) -1-1-> A ) |
| 72 |
2
|
fvexi |
|- .0. e. _V |
| 73 |
72
|
a1i |
|- ( ph -> .0. e. _V ) |
| 74 |
6 4
|
fexd |
|- ( ph -> F e. _V ) |
| 75 |
7 71 73 74
|
fsuppco |
|- ( ph -> ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) finSupp .0. ) |
| 76 |
1 2 3 25 30 5 39 70 75
|
gsum2d |
|- ( ph -> ( G gsum ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) ) = ( G gsum ( y e. X |-> ( G gsum ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) ) ) ) ) |
| 77 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
| 78 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
| 79 |
5 21 77 78
|
iunsnima2 |
|- ( ( ph /\ y e. X ) -> ( U_ x e. X ( { x } X. C ) " { y } ) = [_ y / x ]_ C ) |
| 80 |
|
df-ov |
|- ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) = ( ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) ` <. y , z >. ) |
| 81 |
69
|
ad2antrr |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> A ) |
| 82 |
|
simplr |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> y e. X ) |
| 83 |
|
vsnid |
|- y e. { y } |
| 84 |
83
|
a1i |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> y e. { y } ) |
| 85 |
79
|
eleq2d |
|- ( ( ph /\ y e. X ) -> ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) <-> z e. [_ y / x ]_ C ) ) |
| 86 |
85
|
biimpa |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> z e. [_ y / x ]_ C ) |
| 87 |
84 86
|
opelxpd |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> <. y , z >. e. ( { y } X. [_ y / x ]_ C ) ) |
| 88 |
|
nfcv |
|- F/_ x { y } |
| 89 |
88 77
|
nfxp |
|- F/_ x ( { y } X. [_ y / x ]_ C ) |
| 90 |
89
|
nfel2 |
|- F/ x <. y , z >. e. ( { y } X. [_ y / x ]_ C ) |
| 91 |
|
sneq |
|- ( x = y -> { x } = { y } ) |
| 92 |
91 78
|
xpeq12d |
|- ( x = y -> ( { x } X. C ) = ( { y } X. [_ y / x ]_ C ) ) |
| 93 |
92
|
eleq2d |
|- ( x = y -> ( <. y , z >. e. ( { x } X. C ) <-> <. y , z >. e. ( { y } X. [_ y / x ]_ C ) ) ) |
| 94 |
90 93
|
rspce |
|- ( ( y e. X /\ <. y , z >. e. ( { y } X. [_ y / x ]_ C ) ) -> E. x e. X <. y , z >. e. ( { x } X. C ) ) |
| 95 |
82 87 94
|
syl2anc |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> E. x e. X <. y , z >. e. ( { x } X. C ) ) |
| 96 |
|
eliun |
|- ( <. y , z >. e. U_ x e. X ( { x } X. C ) <-> E. x e. X <. y , z >. e. ( { x } X. C ) ) |
| 97 |
95 96
|
sylibr |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> <. y , z >. e. U_ x e. X ( { x } X. C ) ) |
| 98 |
81 97
|
fvco3d |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) ` <. y , z >. ) = ( F ` ( ( 2nd |` U_ x e. X ( { x } X. C ) ) ` <. y , z >. ) ) ) |
| 99 |
97
|
fvresd |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( ( 2nd |` U_ x e. X ( { x } X. C ) ) ` <. y , z >. ) = ( 2nd ` <. y , z >. ) ) |
| 100 |
|
vex |
|- y e. _V |
| 101 |
|
vex |
|- z e. _V |
| 102 |
100 101
|
op2nd |
|- ( 2nd ` <. y , z >. ) = z |
| 103 |
99 102
|
eqtrdi |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( ( 2nd |` U_ x e. X ( { x } X. C ) ) ` <. y , z >. ) = z ) |
| 104 |
103
|
fveq2d |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( F ` ( ( 2nd |` U_ x e. X ( { x } X. C ) ) ` <. y , z >. ) ) = ( F ` z ) ) |
| 105 |
98 104
|
eqtrd |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) ` <. y , z >. ) = ( F ` z ) ) |
| 106 |
80 105
|
eqtrid |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) = ( F ` z ) ) |
| 107 |
79 106
|
mpteq12dva |
|- ( ( ph /\ y e. X ) -> ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) = ( z e. [_ y / x ]_ C |-> ( F ` z ) ) ) |
| 108 |
6
|
adantr |
|- ( ( ph /\ y e. X ) -> F : A --> B ) |
| 109 |
|
imassrn |
|- ( U_ x e. X ( { x } X. C ) " { y } ) C_ ran U_ x e. X ( { x } X. C ) |
| 110 |
9
|
xpeq2d |
|- ( ph -> ( X X. U_ x e. X C ) = ( X X. A ) ) |
| 111 |
48 110
|
sseqtrid |
|- ( ph -> U_ x e. X ( { x } X. C ) C_ ( X X. A ) ) |
| 112 |
|
rnss |
|- ( U_ x e. X ( { x } X. C ) C_ ( X X. A ) -> ran U_ x e. X ( { x } X. C ) C_ ran ( X X. A ) ) |
| 113 |
111 112
|
syl |
|- ( ph -> ran U_ x e. X ( { x } X. C ) C_ ran ( X X. A ) ) |
| 114 |
113
|
adantr |
|- ( ( ph /\ y e. X ) -> ran U_ x e. X ( { x } X. C ) C_ ran ( X X. A ) ) |
| 115 |
|
rnxpss |
|- ran ( X X. A ) C_ A |
| 116 |
114 115
|
sstrdi |
|- ( ( ph /\ y e. X ) -> ran U_ x e. X ( { x } X. C ) C_ A ) |
| 117 |
109 116
|
sstrid |
|- ( ( ph /\ y e. X ) -> ( U_ x e. X ( { x } X. C ) " { y } ) C_ A ) |
| 118 |
79 117
|
eqsstrrd |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ C C_ A ) |
| 119 |
108 118
|
feqresmpt |
|- ( ( ph /\ y e. X ) -> ( F |` [_ y / x ]_ C ) = ( z e. [_ y / x ]_ C |-> ( F ` z ) ) ) |
| 120 |
107 119
|
eqtr4d |
|- ( ( ph /\ y e. X ) -> ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) = ( F |` [_ y / x ]_ C ) ) |
| 121 |
120
|
oveq2d |
|- ( ( ph /\ y e. X ) -> ( G gsum ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) ) = ( G gsum ( F |` [_ y / x ]_ C ) ) ) |
| 122 |
121
|
mpteq2dva |
|- ( ph -> ( y e. X |-> ( G gsum ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) ) ) = ( y e. X |-> ( G gsum ( F |` [_ y / x ]_ C ) ) ) ) |
| 123 |
|
nfcv |
|- F/_ y ( G gsum ( F |` C ) ) |
| 124 |
|
nfcv |
|- F/_ x G |
| 125 |
|
nfcv |
|- F/_ x gsum |
| 126 |
|
nfcv |
|- F/_ x F |
| 127 |
126 77
|
nfres |
|- F/_ x ( F |` [_ y / x ]_ C ) |
| 128 |
124 125 127
|
nfov |
|- F/_ x ( G gsum ( F |` [_ y / x ]_ C ) ) |
| 129 |
78
|
reseq2d |
|- ( x = y -> ( F |` C ) = ( F |` [_ y / x ]_ C ) ) |
| 130 |
129
|
oveq2d |
|- ( x = y -> ( G gsum ( F |` C ) ) = ( G gsum ( F |` [_ y / x ]_ C ) ) ) |
| 131 |
123 128 130
|
cbvmpt |
|- ( x e. X |-> ( G gsum ( F |` C ) ) ) = ( y e. X |-> ( G gsum ( F |` [_ y / x ]_ C ) ) ) |
| 132 |
122 131
|
eqtr4di |
|- ( ph -> ( y e. X |-> ( G gsum ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) ) ) = ( x e. X |-> ( G gsum ( F |` C ) ) ) ) |
| 133 |
132
|
oveq2d |
|- ( ph -> ( G gsum ( y e. X |-> ( G gsum ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) ) ) ) = ( G gsum ( x e. X |-> ( G gsum ( F |` C ) ) ) ) ) |
| 134 |
12 76 133
|
3eqtrd |
|- ( ph -> ( G gsum F ) = ( G gsum ( x e. X |-> ( G gsum ( F |` C ) ) ) ) ) |