Step |
Hyp |
Ref |
Expression |
1 |
|
gsumpart.b |
|- B = ( Base ` G ) |
2 |
|
gsumpart.z |
|- .0. = ( 0g ` G ) |
3 |
|
gsumpart.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsumpart.a |
|- ( ph -> A e. V ) |
5 |
|
gsumpart.x |
|- ( ph -> X e. W ) |
6 |
|
gsumpart.f |
|- ( ph -> F : A --> B ) |
7 |
|
gsumpart.w |
|- ( ph -> F finSupp .0. ) |
8 |
|
gsumpart.1 |
|- ( ph -> Disj_ x e. X C ) |
9 |
|
gsumpart.2 |
|- ( ph -> U_ x e. X C = A ) |
10 |
|
eqid |
|- U_ x e. X ( { x } X. C ) = U_ x e. X ( { x } X. C ) |
11 |
10 4 5 8 9
|
2ndresdjuf1o |
|- ( ph -> ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) -1-1-onto-> A ) |
12 |
1 2 3 4 6 7 11
|
gsumf1o |
|- ( ph -> ( G gsum F ) = ( G gsum ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) ) ) |
13 |
|
snex |
|- { x } e. _V |
14 |
13
|
a1i |
|- ( ( ph /\ x e. X ) -> { x } e. _V ) |
15 |
4
|
adantr |
|- ( ( ph /\ x e. X ) -> A e. V ) |
16 |
|
ssidd |
|- ( ph -> A C_ A ) |
17 |
9 16
|
eqsstrd |
|- ( ph -> U_ x e. X C C_ A ) |
18 |
|
iunss |
|- ( U_ x e. X C C_ A <-> A. x e. X C C_ A ) |
19 |
17 18
|
sylib |
|- ( ph -> A. x e. X C C_ A ) |
20 |
19
|
r19.21bi |
|- ( ( ph /\ x e. X ) -> C C_ A ) |
21 |
15 20
|
ssexd |
|- ( ( ph /\ x e. X ) -> C e. _V ) |
22 |
14 21
|
xpexd |
|- ( ( ph /\ x e. X ) -> ( { x } X. C ) e. _V ) |
23 |
22
|
ralrimiva |
|- ( ph -> A. x e. X ( { x } X. C ) e. _V ) |
24 |
|
iunexg |
|- ( ( X e. W /\ A. x e. X ( { x } X. C ) e. _V ) -> U_ x e. X ( { x } X. C ) e. _V ) |
25 |
5 23 24
|
syl2anc |
|- ( ph -> U_ x e. X ( { x } X. C ) e. _V ) |
26 |
|
relxp |
|- Rel ( { x } X. C ) |
27 |
26
|
a1i |
|- ( ( ph /\ x e. X ) -> Rel ( { x } X. C ) ) |
28 |
27
|
ralrimiva |
|- ( ph -> A. x e. X Rel ( { x } X. C ) ) |
29 |
|
reliun |
|- ( Rel U_ x e. X ( { x } X. C ) <-> A. x e. X Rel ( { x } X. C ) ) |
30 |
28 29
|
sylibr |
|- ( ph -> Rel U_ x e. X ( { x } X. C ) ) |
31 |
|
dmiun |
|- dom U_ x e. X ( { x } X. C ) = U_ x e. X dom ( { x } X. C ) |
32 |
|
dmxpss |
|- dom ( { x } X. C ) C_ { x } |
33 |
32
|
rgenw |
|- A. x e. X dom ( { x } X. C ) C_ { x } |
34 |
|
ss2iun |
|- ( A. x e. X dom ( { x } X. C ) C_ { x } -> U_ x e. X dom ( { x } X. C ) C_ U_ x e. X { x } ) |
35 |
33 34
|
ax-mp |
|- U_ x e. X dom ( { x } X. C ) C_ U_ x e. X { x } |
36 |
31 35
|
eqsstri |
|- dom U_ x e. X ( { x } X. C ) C_ U_ x e. X { x } |
37 |
|
iunid |
|- U_ x e. X { x } = X |
38 |
36 37
|
sseqtri |
|- dom U_ x e. X ( { x } X. C ) C_ X |
39 |
38
|
a1i |
|- ( ph -> dom U_ x e. X ( { x } X. C ) C_ X ) |
40 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
41 |
|
fof |
|- ( 2nd : _V -onto-> _V -> 2nd : _V --> _V ) |
42 |
40 41
|
ax-mp |
|- 2nd : _V --> _V |
43 |
|
ssv |
|- U_ x e. X ( { x } X. C ) C_ _V |
44 |
|
fssres |
|- ( ( 2nd : _V --> _V /\ U_ x e. X ( { x } X. C ) C_ _V ) -> ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> _V ) |
45 |
42 43 44
|
mp2an |
|- ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> _V |
46 |
|
ffn |
|- ( ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> _V -> ( 2nd |` U_ x e. X ( { x } X. C ) ) Fn U_ x e. X ( { x } X. C ) ) |
47 |
45 46
|
mp1i |
|- ( ph -> ( 2nd |` U_ x e. X ( { x } X. C ) ) Fn U_ x e. X ( { x } X. C ) ) |
48 |
|
djussxp2 |
|- U_ x e. X ( { x } X. C ) C_ ( X X. U_ x e. X C ) |
49 |
|
imass2 |
|- ( U_ x e. X ( { x } X. C ) C_ ( X X. U_ x e. X C ) -> ( 2nd " U_ x e. X ( { x } X. C ) ) C_ ( 2nd " ( X X. U_ x e. X C ) ) ) |
50 |
48 49
|
ax-mp |
|- ( 2nd " U_ x e. X ( { x } X. C ) ) C_ ( 2nd " ( X X. U_ x e. X C ) ) |
51 |
|
ima0 |
|- ( 2nd " (/) ) = (/) |
52 |
|
xpeq1 |
|- ( X = (/) -> ( X X. U_ x e. X C ) = ( (/) X. U_ x e. X C ) ) |
53 |
|
0xp |
|- ( (/) X. U_ x e. X C ) = (/) |
54 |
52 53
|
eqtrdi |
|- ( X = (/) -> ( X X. U_ x e. X C ) = (/) ) |
55 |
54
|
imaeq2d |
|- ( X = (/) -> ( 2nd " ( X X. U_ x e. X C ) ) = ( 2nd " (/) ) ) |
56 |
|
iuneq1 |
|- ( X = (/) -> U_ x e. X C = U_ x e. (/) C ) |
57 |
|
0iun |
|- U_ x e. (/) C = (/) |
58 |
56 57
|
eqtrdi |
|- ( X = (/) -> U_ x e. X C = (/) ) |
59 |
51 55 58
|
3eqtr4a |
|- ( X = (/) -> ( 2nd " ( X X. U_ x e. X C ) ) = U_ x e. X C ) |
60 |
59
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( 2nd " ( X X. U_ x e. X C ) ) = U_ x e. X C ) |
61 |
|
2ndimaxp |
|- ( X =/= (/) -> ( 2nd " ( X X. U_ x e. X C ) ) = U_ x e. X C ) |
62 |
61
|
adantl |
|- ( ( ph /\ X =/= (/) ) -> ( 2nd " ( X X. U_ x e. X C ) ) = U_ x e. X C ) |
63 |
60 62
|
pm2.61dane |
|- ( ph -> ( 2nd " ( X X. U_ x e. X C ) ) = U_ x e. X C ) |
64 |
63 9
|
eqtrd |
|- ( ph -> ( 2nd " ( X X. U_ x e. X C ) ) = A ) |
65 |
50 64
|
sseqtrid |
|- ( ph -> ( 2nd " U_ x e. X ( { x } X. C ) ) C_ A ) |
66 |
|
resssxp |
|- ( ( 2nd " U_ x e. X ( { x } X. C ) ) C_ A <-> ( 2nd |` U_ x e. X ( { x } X. C ) ) C_ ( U_ x e. X ( { x } X. C ) X. A ) ) |
67 |
65 66
|
sylib |
|- ( ph -> ( 2nd |` U_ x e. X ( { x } X. C ) ) C_ ( U_ x e. X ( { x } X. C ) X. A ) ) |
68 |
|
dff2 |
|- ( ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> A <-> ( ( 2nd |` U_ x e. X ( { x } X. C ) ) Fn U_ x e. X ( { x } X. C ) /\ ( 2nd |` U_ x e. X ( { x } X. C ) ) C_ ( U_ x e. X ( { x } X. C ) X. A ) ) ) |
69 |
47 67 68
|
sylanbrc |
|- ( ph -> ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> A ) |
70 |
6 69
|
fcod |
|- ( ph -> ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) : U_ x e. X ( { x } X. C ) --> B ) |
71 |
10 4 5 8 9
|
2ndresdju |
|- ( ph -> ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) -1-1-> A ) |
72 |
2
|
fvexi |
|- .0. e. _V |
73 |
72
|
a1i |
|- ( ph -> .0. e. _V ) |
74 |
6 4
|
fexd |
|- ( ph -> F e. _V ) |
75 |
7 71 73 74
|
fsuppco |
|- ( ph -> ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) finSupp .0. ) |
76 |
1 2 3 25 30 5 39 70 75
|
gsum2d |
|- ( ph -> ( G gsum ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) ) = ( G gsum ( y e. X |-> ( G gsum ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) ) ) ) ) |
77 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
78 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
79 |
5 21 77 78
|
iunsnima2 |
|- ( ( ph /\ y e. X ) -> ( U_ x e. X ( { x } X. C ) " { y } ) = [_ y / x ]_ C ) |
80 |
|
df-ov |
|- ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) = ( ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) ` <. y , z >. ) |
81 |
69
|
ad2antrr |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( 2nd |` U_ x e. X ( { x } X. C ) ) : U_ x e. X ( { x } X. C ) --> A ) |
82 |
|
simplr |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> y e. X ) |
83 |
|
vsnid |
|- y e. { y } |
84 |
83
|
a1i |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> y e. { y } ) |
85 |
79
|
eleq2d |
|- ( ( ph /\ y e. X ) -> ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) <-> z e. [_ y / x ]_ C ) ) |
86 |
85
|
biimpa |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> z e. [_ y / x ]_ C ) |
87 |
84 86
|
opelxpd |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> <. y , z >. e. ( { y } X. [_ y / x ]_ C ) ) |
88 |
|
nfcv |
|- F/_ x { y } |
89 |
88 77
|
nfxp |
|- F/_ x ( { y } X. [_ y / x ]_ C ) |
90 |
89
|
nfel2 |
|- F/ x <. y , z >. e. ( { y } X. [_ y / x ]_ C ) |
91 |
|
sneq |
|- ( x = y -> { x } = { y } ) |
92 |
91 78
|
xpeq12d |
|- ( x = y -> ( { x } X. C ) = ( { y } X. [_ y / x ]_ C ) ) |
93 |
92
|
eleq2d |
|- ( x = y -> ( <. y , z >. e. ( { x } X. C ) <-> <. y , z >. e. ( { y } X. [_ y / x ]_ C ) ) ) |
94 |
90 93
|
rspce |
|- ( ( y e. X /\ <. y , z >. e. ( { y } X. [_ y / x ]_ C ) ) -> E. x e. X <. y , z >. e. ( { x } X. C ) ) |
95 |
82 87 94
|
syl2anc |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> E. x e. X <. y , z >. e. ( { x } X. C ) ) |
96 |
|
eliun |
|- ( <. y , z >. e. U_ x e. X ( { x } X. C ) <-> E. x e. X <. y , z >. e. ( { x } X. C ) ) |
97 |
95 96
|
sylibr |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> <. y , z >. e. U_ x e. X ( { x } X. C ) ) |
98 |
81 97
|
fvco3d |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) ` <. y , z >. ) = ( F ` ( ( 2nd |` U_ x e. X ( { x } X. C ) ) ` <. y , z >. ) ) ) |
99 |
97
|
fvresd |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( ( 2nd |` U_ x e. X ( { x } X. C ) ) ` <. y , z >. ) = ( 2nd ` <. y , z >. ) ) |
100 |
|
vex |
|- y e. _V |
101 |
|
vex |
|- z e. _V |
102 |
100 101
|
op2nd |
|- ( 2nd ` <. y , z >. ) = z |
103 |
99 102
|
eqtrdi |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( ( 2nd |` U_ x e. X ( { x } X. C ) ) ` <. y , z >. ) = z ) |
104 |
103
|
fveq2d |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( F ` ( ( 2nd |` U_ x e. X ( { x } X. C ) ) ` <. y , z >. ) ) = ( F ` z ) ) |
105 |
98 104
|
eqtrd |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) ` <. y , z >. ) = ( F ` z ) ) |
106 |
80 105
|
syl5eq |
|- ( ( ( ph /\ y e. X ) /\ z e. ( U_ x e. X ( { x } X. C ) " { y } ) ) -> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) = ( F ` z ) ) |
107 |
79 106
|
mpteq12dva |
|- ( ( ph /\ y e. X ) -> ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) = ( z e. [_ y / x ]_ C |-> ( F ` z ) ) ) |
108 |
6
|
adantr |
|- ( ( ph /\ y e. X ) -> F : A --> B ) |
109 |
|
imassrn |
|- ( U_ x e. X ( { x } X. C ) " { y } ) C_ ran U_ x e. X ( { x } X. C ) |
110 |
9
|
xpeq2d |
|- ( ph -> ( X X. U_ x e. X C ) = ( X X. A ) ) |
111 |
48 110
|
sseqtrid |
|- ( ph -> U_ x e. X ( { x } X. C ) C_ ( X X. A ) ) |
112 |
|
rnss |
|- ( U_ x e. X ( { x } X. C ) C_ ( X X. A ) -> ran U_ x e. X ( { x } X. C ) C_ ran ( X X. A ) ) |
113 |
111 112
|
syl |
|- ( ph -> ran U_ x e. X ( { x } X. C ) C_ ran ( X X. A ) ) |
114 |
113
|
adantr |
|- ( ( ph /\ y e. X ) -> ran U_ x e. X ( { x } X. C ) C_ ran ( X X. A ) ) |
115 |
|
rnxpss |
|- ran ( X X. A ) C_ A |
116 |
114 115
|
sstrdi |
|- ( ( ph /\ y e. X ) -> ran U_ x e. X ( { x } X. C ) C_ A ) |
117 |
109 116
|
sstrid |
|- ( ( ph /\ y e. X ) -> ( U_ x e. X ( { x } X. C ) " { y } ) C_ A ) |
118 |
79 117
|
eqsstrrd |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ C C_ A ) |
119 |
108 118
|
feqresmpt |
|- ( ( ph /\ y e. X ) -> ( F |` [_ y / x ]_ C ) = ( z e. [_ y / x ]_ C |-> ( F ` z ) ) ) |
120 |
107 119
|
eqtr4d |
|- ( ( ph /\ y e. X ) -> ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) = ( F |` [_ y / x ]_ C ) ) |
121 |
120
|
oveq2d |
|- ( ( ph /\ y e. X ) -> ( G gsum ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) ) = ( G gsum ( F |` [_ y / x ]_ C ) ) ) |
122 |
121
|
mpteq2dva |
|- ( ph -> ( y e. X |-> ( G gsum ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) ) ) = ( y e. X |-> ( G gsum ( F |` [_ y / x ]_ C ) ) ) ) |
123 |
|
nfcv |
|- F/_ y ( G gsum ( F |` C ) ) |
124 |
|
nfcv |
|- F/_ x G |
125 |
|
nfcv |
|- F/_ x gsum |
126 |
|
nfcv |
|- F/_ x F |
127 |
126 77
|
nfres |
|- F/_ x ( F |` [_ y / x ]_ C ) |
128 |
124 125 127
|
nfov |
|- F/_ x ( G gsum ( F |` [_ y / x ]_ C ) ) |
129 |
78
|
reseq2d |
|- ( x = y -> ( F |` C ) = ( F |` [_ y / x ]_ C ) ) |
130 |
129
|
oveq2d |
|- ( x = y -> ( G gsum ( F |` C ) ) = ( G gsum ( F |` [_ y / x ]_ C ) ) ) |
131 |
123 128 130
|
cbvmpt |
|- ( x e. X |-> ( G gsum ( F |` C ) ) ) = ( y e. X |-> ( G gsum ( F |` [_ y / x ]_ C ) ) ) |
132 |
122 131
|
eqtr4di |
|- ( ph -> ( y e. X |-> ( G gsum ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) ) ) = ( x e. X |-> ( G gsum ( F |` C ) ) ) ) |
133 |
132
|
oveq2d |
|- ( ph -> ( G gsum ( y e. X |-> ( G gsum ( z e. ( U_ x e. X ( { x } X. C ) " { y } ) |-> ( y ( F o. ( 2nd |` U_ x e. X ( { x } X. C ) ) ) z ) ) ) ) ) = ( G gsum ( x e. X |-> ( G gsum ( F |` C ) ) ) ) ) |
134 |
12 76 133
|
3eqtrd |
|- ( ph -> ( G gsum F ) = ( G gsum ( x e. X |-> ( G gsum ( F |` C ) ) ) ) ) |