| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ima0 |
|- ( 2nd " (/) ) = (/) |
| 2 |
|
xpeq2 |
|- ( B = (/) -> ( A X. B ) = ( A X. (/) ) ) |
| 3 |
|
xp0 |
|- ( A X. (/) ) = (/) |
| 4 |
2 3
|
eqtrdi |
|- ( B = (/) -> ( A X. B ) = (/) ) |
| 5 |
4
|
imaeq2d |
|- ( B = (/) -> ( 2nd " ( A X. B ) ) = ( 2nd " (/) ) ) |
| 6 |
|
id |
|- ( B = (/) -> B = (/) ) |
| 7 |
1 5 6
|
3eqtr4a |
|- ( B = (/) -> ( 2nd " ( A X. B ) ) = B ) |
| 8 |
7
|
adantl |
|- ( ( A =/= (/) /\ B = (/) ) -> ( 2nd " ( A X. B ) ) = B ) |
| 9 |
|
xpnz |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
| 10 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
| 11 |
|
fofn |
|- ( 2nd : _V -onto-> _V -> 2nd Fn _V ) |
| 12 |
10 11
|
mp1i |
|- ( ( A X. B ) =/= (/) -> 2nd Fn _V ) |
| 13 |
|
ssv |
|- ( A X. B ) C_ _V |
| 14 |
13
|
a1i |
|- ( ( A X. B ) =/= (/) -> ( A X. B ) C_ _V ) |
| 15 |
12 14
|
fvelimabd |
|- ( ( A X. B ) =/= (/) -> ( y e. ( 2nd " ( A X. B ) ) <-> E. p e. ( A X. B ) ( 2nd ` p ) = y ) ) |
| 16 |
9 15
|
sylbi |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ( y e. ( 2nd " ( A X. B ) ) <-> E. p e. ( A X. B ) ( 2nd ` p ) = y ) ) |
| 17 |
|
simpr |
|- ( ( ( ( A =/= (/) /\ B =/= (/) ) /\ p e. ( A X. B ) ) /\ ( 2nd ` p ) = y ) -> ( 2nd ` p ) = y ) |
| 18 |
|
xp2nd |
|- ( p e. ( A X. B ) -> ( 2nd ` p ) e. B ) |
| 19 |
18
|
ad2antlr |
|- ( ( ( ( A =/= (/) /\ B =/= (/) ) /\ p e. ( A X. B ) ) /\ ( 2nd ` p ) = y ) -> ( 2nd ` p ) e. B ) |
| 20 |
17 19
|
eqeltrrd |
|- ( ( ( ( A =/= (/) /\ B =/= (/) ) /\ p e. ( A X. B ) ) /\ ( 2nd ` p ) = y ) -> y e. B ) |
| 21 |
20
|
r19.29an |
|- ( ( ( A =/= (/) /\ B =/= (/) ) /\ E. p e. ( A X. B ) ( 2nd ` p ) = y ) -> y e. B ) |
| 22 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
| 23 |
22
|
biimpi |
|- ( A =/= (/) -> E. x x e. A ) |
| 24 |
23
|
ad2antrr |
|- ( ( ( A =/= (/) /\ B =/= (/) ) /\ y e. B ) -> E. x x e. A ) |
| 25 |
|
opelxpi |
|- ( ( x e. A /\ y e. B ) -> <. x , y >. e. ( A X. B ) ) |
| 26 |
25
|
ancoms |
|- ( ( y e. B /\ x e. A ) -> <. x , y >. e. ( A X. B ) ) |
| 27 |
26
|
adantll |
|- ( ( ( ( A =/= (/) /\ B =/= (/) ) /\ y e. B ) /\ x e. A ) -> <. x , y >. e. ( A X. B ) ) |
| 28 |
|
fveqeq2 |
|- ( p = <. x , y >. -> ( ( 2nd ` p ) = y <-> ( 2nd ` <. x , y >. ) = y ) ) |
| 29 |
28
|
adantl |
|- ( ( ( ( ( A =/= (/) /\ B =/= (/) ) /\ y e. B ) /\ x e. A ) /\ p = <. x , y >. ) -> ( ( 2nd ` p ) = y <-> ( 2nd ` <. x , y >. ) = y ) ) |
| 30 |
|
vex |
|- x e. _V |
| 31 |
|
vex |
|- y e. _V |
| 32 |
30 31
|
op2nd |
|- ( 2nd ` <. x , y >. ) = y |
| 33 |
32
|
a1i |
|- ( ( ( ( A =/= (/) /\ B =/= (/) ) /\ y e. B ) /\ x e. A ) -> ( 2nd ` <. x , y >. ) = y ) |
| 34 |
27 29 33
|
rspcedvd |
|- ( ( ( ( A =/= (/) /\ B =/= (/) ) /\ y e. B ) /\ x e. A ) -> E. p e. ( A X. B ) ( 2nd ` p ) = y ) |
| 35 |
24 34
|
exlimddv |
|- ( ( ( A =/= (/) /\ B =/= (/) ) /\ y e. B ) -> E. p e. ( A X. B ) ( 2nd ` p ) = y ) |
| 36 |
21 35
|
impbida |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ( E. p e. ( A X. B ) ( 2nd ` p ) = y <-> y e. B ) ) |
| 37 |
16 36
|
bitrd |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ( y e. ( 2nd " ( A X. B ) ) <-> y e. B ) ) |
| 38 |
37
|
eqrdv |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ( 2nd " ( A X. B ) ) = B ) |
| 39 |
8 38
|
pm2.61dane |
|- ( A =/= (/) -> ( 2nd " ( A X. B ) ) = B ) |