Step |
Hyp |
Ref |
Expression |
1 |
|
2ndresdju.u |
|- U = U_ x e. X ( { x } X. C ) |
2 |
|
2ndresdju.a |
|- ( ph -> A e. V ) |
3 |
|
2ndresdju.x |
|- ( ph -> X e. W ) |
4 |
|
2ndresdju.1 |
|- ( ph -> Disj_ x e. X C ) |
5 |
|
2ndresdju.2 |
|- ( ph -> U_ x e. X C = A ) |
6 |
1 2 3 4 5
|
2ndresdju |
|- ( ph -> ( 2nd |` U ) : U -1-1-> A ) |
7 |
1
|
iunfo |
|- ( 2nd |` U ) : U -onto-> U_ x e. X C |
8 |
|
foeq3 |
|- ( U_ x e. X C = A -> ( ( 2nd |` U ) : U -onto-> U_ x e. X C <-> ( 2nd |` U ) : U -onto-> A ) ) |
9 |
8
|
biimpa |
|- ( ( U_ x e. X C = A /\ ( 2nd |` U ) : U -onto-> U_ x e. X C ) -> ( 2nd |` U ) : U -onto-> A ) |
10 |
5 7 9
|
sylancl |
|- ( ph -> ( 2nd |` U ) : U -onto-> A ) |
11 |
|
df-f1o |
|- ( ( 2nd |` U ) : U -1-1-onto-> A <-> ( ( 2nd |` U ) : U -1-1-> A /\ ( 2nd |` U ) : U -onto-> A ) ) |
12 |
6 10 11
|
sylanbrc |
|- ( ph -> ( 2nd |` U ) : U -1-1-onto-> A ) |