Step |
Hyp |
Ref |
Expression |
1 |
|
2ndresdju.u |
⊢ 𝑈 = ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) |
2 |
|
2ndresdju.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
2ndresdju.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) |
4 |
|
2ndresdju.1 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝑋 𝐶 ) |
5 |
|
2ndresdju.2 |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 ) |
6 |
1 2 3 4 5
|
2ndresdju |
⊢ ( 𝜑 → ( 2nd ↾ 𝑈 ) : 𝑈 –1-1→ 𝐴 ) |
7 |
1
|
iunfo |
⊢ ( 2nd ↾ 𝑈 ) : 𝑈 –onto→ ∪ 𝑥 ∈ 𝑋 𝐶 |
8 |
|
foeq3 |
⊢ ( ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 → ( ( 2nd ↾ 𝑈 ) : 𝑈 –onto→ ∪ 𝑥 ∈ 𝑋 𝐶 ↔ ( 2nd ↾ 𝑈 ) : 𝑈 –onto→ 𝐴 ) ) |
9 |
8
|
biimpa |
⊢ ( ( ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 ∧ ( 2nd ↾ 𝑈 ) : 𝑈 –onto→ ∪ 𝑥 ∈ 𝑋 𝐶 ) → ( 2nd ↾ 𝑈 ) : 𝑈 –onto→ 𝐴 ) |
10 |
5 7 9
|
sylancl |
⊢ ( 𝜑 → ( 2nd ↾ 𝑈 ) : 𝑈 –onto→ 𝐴 ) |
11 |
|
df-f1o |
⊢ ( ( 2nd ↾ 𝑈 ) : 𝑈 –1-1-onto→ 𝐴 ↔ ( ( 2nd ↾ 𝑈 ) : 𝑈 –1-1→ 𝐴 ∧ ( 2nd ↾ 𝑈 ) : 𝑈 –onto→ 𝐴 ) ) |
12 |
6 10 11
|
sylanbrc |
⊢ ( 𝜑 → ( 2nd ↾ 𝑈 ) : 𝑈 –1-1-onto→ 𝐴 ) |