Metamath Proof Explorer


Theorem 2ndresdjuf1o

Description: The 2nd function restricted to a disjoint union is a bijection. See also e.g. 2ndconst . (Contributed by Thierry Arnoux, 23-Jun-2024)

Ref Expression
Hypotheses 2ndresdju.u 𝑈 = 𝑥𝑋 ( { 𝑥 } × 𝐶 )
2ndresdju.a ( 𝜑𝐴𝑉 )
2ndresdju.x ( 𝜑𝑋𝑊 )
2ndresdju.1 ( 𝜑Disj 𝑥𝑋 𝐶 )
2ndresdju.2 ( 𝜑 𝑥𝑋 𝐶 = 𝐴 )
Assertion 2ndresdjuf1o ( 𝜑 → ( 2nd𝑈 ) : 𝑈1-1-onto𝐴 )

Proof

Step Hyp Ref Expression
1 2ndresdju.u 𝑈 = 𝑥𝑋 ( { 𝑥 } × 𝐶 )
2 2ndresdju.a ( 𝜑𝐴𝑉 )
3 2ndresdju.x ( 𝜑𝑋𝑊 )
4 2ndresdju.1 ( 𝜑Disj 𝑥𝑋 𝐶 )
5 2ndresdju.2 ( 𝜑 𝑥𝑋 𝐶 = 𝐴 )
6 1 2 3 4 5 2ndresdju ( 𝜑 → ( 2nd𝑈 ) : 𝑈1-1𝐴 )
7 1 iunfo ( 2nd𝑈 ) : 𝑈onto 𝑥𝑋 𝐶
8 foeq3 ( 𝑥𝑋 𝐶 = 𝐴 → ( ( 2nd𝑈 ) : 𝑈onto 𝑥𝑋 𝐶 ↔ ( 2nd𝑈 ) : 𝑈onto𝐴 ) )
9 8 biimpa ( ( 𝑥𝑋 𝐶 = 𝐴 ∧ ( 2nd𝑈 ) : 𝑈onto 𝑥𝑋 𝐶 ) → ( 2nd𝑈 ) : 𝑈onto𝐴 )
10 5 7 9 sylancl ( 𝜑 → ( 2nd𝑈 ) : 𝑈onto𝐴 )
11 df-f1o ( ( 2nd𝑈 ) : 𝑈1-1-onto𝐴 ↔ ( ( 2nd𝑈 ) : 𝑈1-1𝐴 ∧ ( 2nd𝑈 ) : 𝑈onto𝐴 ) )
12 6 10 11 sylanbrc ( 𝜑 → ( 2nd𝑈 ) : 𝑈1-1-onto𝐴 )