| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2ndresdju.u | ⊢ 𝑈  =  ∪  𝑥  ∈  𝑋 ( { 𝑥 }  ×  𝐶 ) | 
						
							| 2 |  | 2ndresdju.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | 2ndresdju.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑊 ) | 
						
							| 4 |  | 2ndresdju.1 | ⊢ ( 𝜑  →  Disj  𝑥  ∈  𝑋 𝐶 ) | 
						
							| 5 |  | 2ndresdju.2 | ⊢ ( 𝜑  →  ∪  𝑥  ∈  𝑋 𝐶  =  𝐴 ) | 
						
							| 6 | 1 2 3 4 5 | 2ndresdju | ⊢ ( 𝜑  →  ( 2nd   ↾  𝑈 ) : 𝑈 –1-1→ 𝐴 ) | 
						
							| 7 | 1 | iunfo | ⊢ ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ ∪  𝑥  ∈  𝑋 𝐶 | 
						
							| 8 |  | foeq3 | ⊢ ( ∪  𝑥  ∈  𝑋 𝐶  =  𝐴  →  ( ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ ∪  𝑥  ∈  𝑋 𝐶  ↔  ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ 𝐴 ) ) | 
						
							| 9 | 8 | biimpa | ⊢ ( ( ∪  𝑥  ∈  𝑋 𝐶  =  𝐴  ∧  ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ ∪  𝑥  ∈  𝑋 𝐶 )  →  ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ 𝐴 ) | 
						
							| 10 | 5 7 9 | sylancl | ⊢ ( 𝜑  →  ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ 𝐴 ) | 
						
							| 11 |  | df-f1o | ⊢ ( ( 2nd   ↾  𝑈 ) : 𝑈 –1-1-onto→ 𝐴  ↔  ( ( 2nd   ↾  𝑈 ) : 𝑈 –1-1→ 𝐴  ∧  ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ 𝐴 ) ) | 
						
							| 12 | 6 10 11 | sylanbrc | ⊢ ( 𝜑  →  ( 2nd   ↾  𝑈 ) : 𝑈 –1-1-onto→ 𝐴 ) |