Step |
Hyp |
Ref |
Expression |
1 |
|
2ndresdju.u |
|- U = U_ x e. X ( { x } X. C ) |
2 |
|
2ndresdju.a |
|- ( ph -> A e. V ) |
3 |
|
2ndresdju.x |
|- ( ph -> X e. W ) |
4 |
|
2ndresdju.1 |
|- ( ph -> Disj_ x e. X C ) |
5 |
|
2ndresdju.2 |
|- ( ph -> U_ x e. X C = A ) |
6 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
7 |
|
fofn |
|- ( 2nd : _V -onto-> _V -> 2nd Fn _V ) |
8 |
6 7
|
mp1i |
|- ( ph -> 2nd Fn _V ) |
9 |
|
ssv |
|- U C_ _V |
10 |
9
|
a1i |
|- ( ph -> U C_ _V ) |
11 |
8 10
|
fnssresd |
|- ( ph -> ( 2nd |` U ) Fn U ) |
12 |
|
simpr |
|- ( ( ph /\ u e. U ) -> u e. U ) |
13 |
12
|
fvresd |
|- ( ( ph /\ u e. U ) -> ( ( 2nd |` U ) ` u ) = ( 2nd ` u ) ) |
14 |
|
djussxp2 |
|- U_ x e. X ( { x } X. C ) C_ ( X X. U_ x e. X C ) |
15 |
5
|
xpeq2d |
|- ( ph -> ( X X. U_ x e. X C ) = ( X X. A ) ) |
16 |
14 15
|
sseqtrid |
|- ( ph -> U_ x e. X ( { x } X. C ) C_ ( X X. A ) ) |
17 |
1 16
|
eqsstrid |
|- ( ph -> U C_ ( X X. A ) ) |
18 |
17
|
sselda |
|- ( ( ph /\ u e. U ) -> u e. ( X X. A ) ) |
19 |
|
xp2nd |
|- ( u e. ( X X. A ) -> ( 2nd ` u ) e. A ) |
20 |
18 19
|
syl |
|- ( ( ph /\ u e. U ) -> ( 2nd ` u ) e. A ) |
21 |
13 20
|
eqeltrd |
|- ( ( ph /\ u e. U ) -> ( ( 2nd |` U ) ` u ) e. A ) |
22 |
21
|
ralrimiva |
|- ( ph -> A. u e. U ( ( 2nd |` U ) ` u ) e. A ) |
23 |
|
ffnfv |
|- ( ( 2nd |` U ) : U --> A <-> ( ( 2nd |` U ) Fn U /\ A. u e. U ( ( 2nd |` U ) ` u ) e. A ) ) |
24 |
11 22 23
|
sylanbrc |
|- ( ph -> ( 2nd |` U ) : U --> A ) |
25 |
|
nfv |
|- F/ x ph |
26 |
|
nfiu1 |
|- F/_ x U_ x e. X ( { x } X. C ) |
27 |
1 26
|
nfcxfr |
|- F/_ x U |
28 |
27
|
nfcri |
|- F/ x u e. U |
29 |
25 28
|
nfan |
|- F/ x ( ph /\ u e. U ) |
30 |
27
|
nfcri |
|- F/ x v e. U |
31 |
29 30
|
nfan |
|- F/ x ( ( ph /\ u e. U ) /\ v e. U ) |
32 |
|
nfcv |
|- F/_ x 2nd |
33 |
32 27
|
nfres |
|- F/_ x ( 2nd |` U ) |
34 |
|
nfcv |
|- F/_ x u |
35 |
33 34
|
nffv |
|- F/_ x ( ( 2nd |` U ) ` u ) |
36 |
|
nfcv |
|- F/_ x v |
37 |
33 36
|
nffv |
|- F/_ x ( ( 2nd |` U ) ` v ) |
38 |
35 37
|
nfeq |
|- F/ x ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) |
39 |
31 38
|
nfan |
|- F/ x ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) |
40 |
|
nfv |
|- F/ x u = v |
41 |
1
|
eleq2i |
|- ( u e. U <-> u e. U_ x e. X ( { x } X. C ) ) |
42 |
|
eliunxp |
|- ( u e. U_ x e. X ( { x } X. C ) <-> E. x E. c ( u = <. x , c >. /\ ( x e. X /\ c e. C ) ) ) |
43 |
41 42
|
sylbb |
|- ( u e. U -> E. x E. c ( u = <. x , c >. /\ ( x e. X /\ c e. C ) ) ) |
44 |
43
|
ad3antlr |
|- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) -> E. x E. c ( u = <. x , c >. /\ ( x e. X /\ c e. C ) ) ) |
45 |
1
|
eleq2i |
|- ( v e. U <-> v e. U_ x e. X ( { x } X. C ) ) |
46 |
|
eliunxp |
|- ( v e. U_ x e. X ( { x } X. C ) <-> E. x E. d ( v = <. x , d >. /\ ( x e. X /\ d e. C ) ) ) |
47 |
45 46
|
bitri |
|- ( v e. U <-> E. x E. d ( v = <. x , d >. /\ ( x e. X /\ d e. C ) ) ) |
48 |
|
nfv |
|- F/ y E. d ( v = <. x , d >. /\ ( x e. X /\ d e. C ) ) |
49 |
|
nfv |
|- F/ x v = <. y , d >. |
50 |
|
nfv |
|- F/ x y e. X |
51 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
52 |
51
|
nfcri |
|- F/ x d e. [_ y / x ]_ C |
53 |
50 52
|
nfan |
|- F/ x ( y e. X /\ d e. [_ y / x ]_ C ) |
54 |
49 53
|
nfan |
|- F/ x ( v = <. y , d >. /\ ( y e. X /\ d e. [_ y / x ]_ C ) ) |
55 |
54
|
nfex |
|- F/ x E. d ( v = <. y , d >. /\ ( y e. X /\ d e. [_ y / x ]_ C ) ) |
56 |
|
opeq1 |
|- ( x = y -> <. x , d >. = <. y , d >. ) |
57 |
56
|
eqeq2d |
|- ( x = y -> ( v = <. x , d >. <-> v = <. y , d >. ) ) |
58 |
|
eleq1w |
|- ( x = y -> ( x e. X <-> y e. X ) ) |
59 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
60 |
59
|
eleq2d |
|- ( x = y -> ( d e. C <-> d e. [_ y / x ]_ C ) ) |
61 |
58 60
|
anbi12d |
|- ( x = y -> ( ( x e. X /\ d e. C ) <-> ( y e. X /\ d e. [_ y / x ]_ C ) ) ) |
62 |
57 61
|
anbi12d |
|- ( x = y -> ( ( v = <. x , d >. /\ ( x e. X /\ d e. C ) ) <-> ( v = <. y , d >. /\ ( y e. X /\ d e. [_ y / x ]_ C ) ) ) ) |
63 |
62
|
exbidv |
|- ( x = y -> ( E. d ( v = <. x , d >. /\ ( x e. X /\ d e. C ) ) <-> E. d ( v = <. y , d >. /\ ( y e. X /\ d e. [_ y / x ]_ C ) ) ) ) |
64 |
48 55 63
|
cbvexv1 |
|- ( E. x E. d ( v = <. x , d >. /\ ( x e. X /\ d e. C ) ) <-> E. y E. d ( v = <. y , d >. /\ ( y e. X /\ d e. [_ y / x ]_ C ) ) ) |
65 |
47 64
|
sylbb |
|- ( v e. U -> E. y E. d ( v = <. y , d >. /\ ( y e. X /\ d e. [_ y / x ]_ C ) ) ) |
66 |
65
|
ad5antlr |
|- ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) -> E. y E. d ( v = <. y , d >. /\ ( y e. X /\ d e. [_ y / x ]_ C ) ) ) |
67 |
4
|
ad9antr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> Disj_ x e. X C ) |
68 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> x e. X ) |
69 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> y e. X ) |
70 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> c e. C ) |
71 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) |
72 |
|
simp-9r |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> u e. U ) |
73 |
72
|
fvresd |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> ( ( 2nd |` U ) ` u ) = ( 2nd ` u ) ) |
74 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> u = <. x , c >. ) |
75 |
74
|
fveq2d |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> ( 2nd ` u ) = ( 2nd ` <. x , c >. ) ) |
76 |
|
vex |
|- x e. _V |
77 |
|
vex |
|- c e. _V |
78 |
76 77
|
op2nd |
|- ( 2nd ` <. x , c >. ) = c |
79 |
75 78
|
eqtrdi |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> ( 2nd ` u ) = c ) |
80 |
73 79
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> ( ( 2nd |` U ) ` u ) = c ) |
81 |
|
simp-8r |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> v e. U ) |
82 |
81
|
fvresd |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> ( ( 2nd |` U ) ` v ) = ( 2nd ` v ) ) |
83 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> v = <. y , d >. ) |
84 |
83
|
fveq2d |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> ( 2nd ` v ) = ( 2nd ` <. y , d >. ) ) |
85 |
|
vex |
|- y e. _V |
86 |
|
vex |
|- d e. _V |
87 |
85 86
|
op2nd |
|- ( 2nd ` <. y , d >. ) = d |
88 |
84 87
|
eqtrdi |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> ( 2nd ` v ) = d ) |
89 |
82 88
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> ( ( 2nd |` U ) ` v ) = d ) |
90 |
71 80 89
|
3eqtr3d |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> c = d ) |
91 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> d e. [_ y / x ]_ C ) |
92 |
90 91
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> c e. [_ y / x ]_ C ) |
93 |
51 59
|
disjif |
|- ( ( Disj_ x e. X C /\ ( x e. X /\ y e. X ) /\ ( c e. C /\ c e. [_ y / x ]_ C ) ) -> x = y ) |
94 |
67 68 69 70 92 93
|
syl122anc |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> x = y ) |
95 |
94 90
|
opeq12d |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> <. x , c >. = <. y , d >. ) |
96 |
95 74 83
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ y e. X ) /\ d e. [_ y / x ]_ C ) -> u = v ) |
97 |
96
|
anasss |
|- ( ( ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) /\ v = <. y , d >. ) /\ ( y e. X /\ d e. [_ y / x ]_ C ) ) -> u = v ) |
98 |
97
|
expl |
|- ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) -> ( ( v = <. y , d >. /\ ( y e. X /\ d e. [_ y / x ]_ C ) ) -> u = v ) ) |
99 |
98
|
exlimdvv |
|- ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) -> ( E. y E. d ( v = <. y , d >. /\ ( y e. X /\ d e. [_ y / x ]_ C ) ) -> u = v ) ) |
100 |
66 99
|
mpd |
|- ( ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ x e. X ) /\ c e. C ) -> u = v ) |
101 |
100
|
anasss |
|- ( ( ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) /\ u = <. x , c >. ) /\ ( x e. X /\ c e. C ) ) -> u = v ) |
102 |
101
|
expl |
|- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) -> ( ( u = <. x , c >. /\ ( x e. X /\ c e. C ) ) -> u = v ) ) |
103 |
102
|
exlimdv |
|- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) -> ( E. c ( u = <. x , c >. /\ ( x e. X /\ c e. C ) ) -> u = v ) ) |
104 |
39 40 44 103
|
exlimimdd |
|- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) ) -> u = v ) |
105 |
104
|
ex |
|- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) -> u = v ) ) |
106 |
105
|
anasss |
|- ( ( ph /\ ( u e. U /\ v e. U ) ) -> ( ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) -> u = v ) ) |
107 |
106
|
ralrimivva |
|- ( ph -> A. u e. U A. v e. U ( ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) -> u = v ) ) |
108 |
|
dff13 |
|- ( ( 2nd |` U ) : U -1-1-> A <-> ( ( 2nd |` U ) : U --> A /\ A. u e. U A. v e. U ( ( ( 2nd |` U ) ` u ) = ( ( 2nd |` U ) ` v ) -> u = v ) ) ) |
109 |
24 107 108
|
sylanbrc |
|- ( ph -> ( 2nd |` U ) : U -1-1-> A ) |