| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumpart.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsumpart.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsumpart.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
gsumpart.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
gsumpart.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) |
| 6 |
|
gsumpart.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 |
|
gsumpart.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 8 |
|
gsumpart.1 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝑋 𝐶 ) |
| 9 |
|
gsumpart.2 |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 ) |
| 10 |
|
eqid |
⊢ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) = ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) |
| 11 |
10 4 5 8 9
|
2ndresdjuf1o |
⊢ ( 𝜑 → ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) : ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) –1-1-onto→ 𝐴 ) |
| 12 |
1 2 3 4 6 7 11
|
gsumf1o |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) ) ) |
| 13 |
|
vsnex |
⊢ { 𝑥 } ∈ V |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ V ) |
| 15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑉 ) |
| 16 |
|
ssidd |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐴 ) |
| 17 |
9 16
|
eqsstrd |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 ⊆ 𝐴 ) |
| 18 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝑋 𝐶 ⊆ 𝐴 ↔ ∀ 𝑥 ∈ 𝑋 𝐶 ⊆ 𝐴 ) |
| 19 |
17 18
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐶 ⊆ 𝐴 ) |
| 20 |
19
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ⊆ 𝐴 ) |
| 21 |
15 20
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ V ) |
| 22 |
14 21
|
xpexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( { 𝑥 } × 𝐶 ) ∈ V ) |
| 23 |
22
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ∈ V ) |
| 24 |
|
iunexg |
⊢ ( ( 𝑋 ∈ 𝑊 ∧ ∀ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ∈ V ) → ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ∈ V ) |
| 25 |
5 23 24
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ∈ V ) |
| 26 |
|
relxp |
⊢ Rel ( { 𝑥 } × 𝐶 ) |
| 27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Rel ( { 𝑥 } × 𝐶 ) ) |
| 28 |
27
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 Rel ( { 𝑥 } × 𝐶 ) ) |
| 29 |
|
reliun |
⊢ ( Rel ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ↔ ∀ 𝑥 ∈ 𝑋 Rel ( { 𝑥 } × 𝐶 ) ) |
| 30 |
28 29
|
sylibr |
⊢ ( 𝜑 → Rel ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) |
| 31 |
|
dmiun |
⊢ dom ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) = ∪ 𝑥 ∈ 𝑋 dom ( { 𝑥 } × 𝐶 ) |
| 32 |
|
dmxpss |
⊢ dom ( { 𝑥 } × 𝐶 ) ⊆ { 𝑥 } |
| 33 |
32
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝑋 dom ( { 𝑥 } × 𝐶 ) ⊆ { 𝑥 } |
| 34 |
|
ss2iun |
⊢ ( ∀ 𝑥 ∈ 𝑋 dom ( { 𝑥 } × 𝐶 ) ⊆ { 𝑥 } → ∪ 𝑥 ∈ 𝑋 dom ( { 𝑥 } × 𝐶 ) ⊆ ∪ 𝑥 ∈ 𝑋 { 𝑥 } ) |
| 35 |
33 34
|
ax-mp |
⊢ ∪ 𝑥 ∈ 𝑋 dom ( { 𝑥 } × 𝐶 ) ⊆ ∪ 𝑥 ∈ 𝑋 { 𝑥 } |
| 36 |
31 35
|
eqsstri |
⊢ dom ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ∪ 𝑥 ∈ 𝑋 { 𝑥 } |
| 37 |
|
iunid |
⊢ ∪ 𝑥 ∈ 𝑋 { 𝑥 } = 𝑋 |
| 38 |
36 37
|
sseqtri |
⊢ dom ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ 𝑋 |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → dom ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ 𝑋 ) |
| 40 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
| 41 |
|
fof |
⊢ ( 2nd : V –onto→ V → 2nd : V ⟶ V ) |
| 42 |
40 41
|
ax-mp |
⊢ 2nd : V ⟶ V |
| 43 |
|
ssv |
⊢ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ V |
| 44 |
|
fssres |
⊢ ( ( 2nd : V ⟶ V ∧ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ V ) → ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) : ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⟶ V ) |
| 45 |
42 43 44
|
mp2an |
⊢ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) : ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⟶ V |
| 46 |
|
ffn |
⊢ ( ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) : ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⟶ V → ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) Fn ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) |
| 47 |
45 46
|
mp1i |
⊢ ( 𝜑 → ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) Fn ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) |
| 48 |
|
djussxp2 |
⊢ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) |
| 49 |
|
imass2 |
⊢ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) → ( 2nd “ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ ( 2nd “ ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) ) ) |
| 50 |
48 49
|
ax-mp |
⊢ ( 2nd “ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ ( 2nd “ ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) ) |
| 51 |
|
ima0 |
⊢ ( 2nd “ ∅ ) = ∅ |
| 52 |
|
xpeq1 |
⊢ ( 𝑋 = ∅ → ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) = ( ∅ × ∪ 𝑥 ∈ 𝑋 𝐶 ) ) |
| 53 |
|
0xp |
⊢ ( ∅ × ∪ 𝑥 ∈ 𝑋 𝐶 ) = ∅ |
| 54 |
52 53
|
eqtrdi |
⊢ ( 𝑋 = ∅ → ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) = ∅ ) |
| 55 |
54
|
imaeq2d |
⊢ ( 𝑋 = ∅ → ( 2nd “ ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) ) = ( 2nd “ ∅ ) ) |
| 56 |
|
iuneq1 |
⊢ ( 𝑋 = ∅ → ∪ 𝑥 ∈ 𝑋 𝐶 = ∪ 𝑥 ∈ ∅ 𝐶 ) |
| 57 |
|
0iun |
⊢ ∪ 𝑥 ∈ ∅ 𝐶 = ∅ |
| 58 |
56 57
|
eqtrdi |
⊢ ( 𝑋 = ∅ → ∪ 𝑥 ∈ 𝑋 𝐶 = ∅ ) |
| 59 |
51 55 58
|
3eqtr4a |
⊢ ( 𝑋 = ∅ → ( 2nd “ ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) ) = ∪ 𝑥 ∈ 𝑋 𝐶 ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 2nd “ ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) ) = ∪ 𝑥 ∈ 𝑋 𝐶 ) |
| 61 |
|
2ndimaxp |
⊢ ( 𝑋 ≠ ∅ → ( 2nd “ ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) ) = ∪ 𝑥 ∈ 𝑋 𝐶 ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( 2nd “ ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) ) = ∪ 𝑥 ∈ 𝑋 𝐶 ) |
| 63 |
60 62
|
pm2.61dane |
⊢ ( 𝜑 → ( 2nd “ ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) ) = ∪ 𝑥 ∈ 𝑋 𝐶 ) |
| 64 |
63 9
|
eqtrd |
⊢ ( 𝜑 → ( 2nd “ ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) ) = 𝐴 ) |
| 65 |
50 64
|
sseqtrid |
⊢ ( 𝜑 → ( 2nd “ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ 𝐴 ) |
| 66 |
|
resssxp |
⊢ ( ( 2nd “ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ 𝐴 ↔ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) × 𝐴 ) ) |
| 67 |
65 66
|
sylib |
⊢ ( 𝜑 → ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) × 𝐴 ) ) |
| 68 |
|
dff2 |
⊢ ( ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) : ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⟶ 𝐴 ↔ ( ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) Fn ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ∧ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) × 𝐴 ) ) ) |
| 69 |
47 67 68
|
sylanbrc |
⊢ ( 𝜑 → ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) : ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⟶ 𝐴 ) |
| 70 |
6 69
|
fcod |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) : ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⟶ 𝐵 ) |
| 71 |
10 4 5 8 9
|
2ndresdju |
⊢ ( 𝜑 → ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) : ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) –1-1→ 𝐴 ) |
| 72 |
2
|
fvexi |
⊢ 0 ∈ V |
| 73 |
72
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 74 |
6 4
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 75 |
7 71 73 74
|
fsuppco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) finSupp 0 ) |
| 76 |
1 2 3 25 30 5 39 70 75
|
gsum2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) ) = ( 𝐺 Σg ( 𝑦 ∈ 𝑋 ↦ ( 𝐺 Σg ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) ) ) ) ) |
| 77 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
| 78 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 79 |
5 21 77 78
|
iunsnima2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 80 |
|
df-ov |
⊢ ( 𝑦 ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) = ( ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) ‘ 〈 𝑦 , 𝑧 〉 ) |
| 81 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) : ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⟶ 𝐴 ) |
| 82 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → 𝑦 ∈ 𝑋 ) |
| 83 |
|
vsnid |
⊢ 𝑦 ∈ { 𝑦 } |
| 84 |
83
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → 𝑦 ∈ { 𝑦 } ) |
| 85 |
79
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↔ 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 86 |
85
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 87 |
84 86
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → 〈 𝑦 , 𝑧 〉 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 88 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝑦 } |
| 89 |
88 77
|
nfxp |
⊢ Ⅎ 𝑥 ( { 𝑦 } × ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 90 |
89
|
nfel2 |
⊢ Ⅎ 𝑥 〈 𝑦 , 𝑧 〉 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 91 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
| 92 |
91 78
|
xpeq12d |
⊢ ( 𝑥 = 𝑦 → ( { 𝑥 } × 𝐶 ) = ( { 𝑦 } × ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 93 |
92
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 〈 𝑦 , 𝑧 〉 ∈ ( { 𝑥 } × 𝐶 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) |
| 94 |
90 93
|
rspce |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ 〈 𝑦 , 𝑧 〉 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) → ∃ 𝑥 ∈ 𝑋 〈 𝑦 , 𝑧 〉 ∈ ( { 𝑥 } × 𝐶 ) ) |
| 95 |
82 87 94
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ∃ 𝑥 ∈ 𝑋 〈 𝑦 , 𝑧 〉 ∈ ( { 𝑥 } × 𝐶 ) ) |
| 96 |
|
eliun |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ↔ ∃ 𝑥 ∈ 𝑋 〈 𝑦 , 𝑧 〉 ∈ ( { 𝑥 } × 𝐶 ) ) |
| 97 |
95 96
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → 〈 𝑦 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) |
| 98 |
81 97
|
fvco3d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) ‘ 〈 𝑦 , 𝑧 〉 ) = ( 𝐹 ‘ ( ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ‘ 〈 𝑦 , 𝑧 〉 ) ) ) |
| 99 |
97
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ‘ 〈 𝑦 , 𝑧 〉 ) = ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ) |
| 100 |
|
vex |
⊢ 𝑦 ∈ V |
| 101 |
|
vex |
⊢ 𝑧 ∈ V |
| 102 |
100 101
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) = 𝑧 |
| 103 |
99 102
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ‘ 〈 𝑦 , 𝑧 〉 ) = 𝑧 ) |
| 104 |
103
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( 𝐹 ‘ ( ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ‘ 〈 𝑦 , 𝑧 〉 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 105 |
98 104
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) ‘ 〈 𝑦 , 𝑧 〉 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 106 |
80 105
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( 𝑦 ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 107 |
79 106
|
mpteq12dva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) = ( 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 108 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 109 |
|
imassrn |
⊢ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ⊆ ran ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) |
| 110 |
9
|
xpeq2d |
⊢ ( 𝜑 → ( 𝑋 × ∪ 𝑥 ∈ 𝑋 𝐶 ) = ( 𝑋 × 𝐴 ) ) |
| 111 |
48 110
|
sseqtrid |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝑋 × 𝐴 ) ) |
| 112 |
|
rnss |
⊢ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝑋 × 𝐴 ) → ran ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ran ( 𝑋 × 𝐴 ) ) |
| 113 |
111 112
|
syl |
⊢ ( 𝜑 → ran ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ran ( 𝑋 × 𝐴 ) ) |
| 114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ran ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ran ( 𝑋 × 𝐴 ) ) |
| 115 |
|
rnxpss |
⊢ ran ( 𝑋 × 𝐴 ) ⊆ 𝐴 |
| 116 |
114 115
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ran ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ⊆ 𝐴 ) |
| 117 |
109 116
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ⊆ 𝐴 ) |
| 118 |
79 117
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ⊆ 𝐴 ) |
| 119 |
108 118
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ↾ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 120 |
107 119
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) = ( 𝐹 ↾ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 121 |
120
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 Σg ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) |
| 122 |
121
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ ( 𝐺 Σg ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( 𝐺 Σg ( 𝐹 ↾ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) ) |
| 123 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) |
| 124 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐺 |
| 125 |
|
nfcv |
⊢ Ⅎ 𝑥 Σg |
| 126 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
| 127 |
126 77
|
nfres |
⊢ Ⅎ 𝑥 ( 𝐹 ↾ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 128 |
124 125 127
|
nfov |
⊢ Ⅎ 𝑥 ( 𝐺 Σg ( 𝐹 ↾ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 129 |
78
|
reseq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ↾ 𝐶 ) = ( 𝐹 ↾ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 130 |
129
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) |
| 131 |
123 128 130
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( 𝐺 Σg ( 𝐹 ↾ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) |
| 132 |
122 131
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ ( 𝐺 Σg ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ) ) |
| 133 |
132
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑦 ∈ 𝑋 ↦ ( 𝐺 Σg ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd ↾ ∪ 𝑥 ∈ 𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) ) ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ) ) ) |
| 134 |
12 76 133
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ) ) ) |