Metamath Proof Explorer


Theorem gsumpart

Description: Express a group sum as a double sum, grouping along a (possibly infinite) partition. (Contributed by Thierry Arnoux, 22-Jun-2024)

Ref Expression
Hypotheses gsumpart.b 𝐵 = ( Base ‘ 𝐺 )
gsumpart.z 0 = ( 0g𝐺 )
gsumpart.g ( 𝜑𝐺 ∈ CMnd )
gsumpart.a ( 𝜑𝐴𝑉 )
gsumpart.x ( 𝜑𝑋𝑊 )
gsumpart.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumpart.w ( 𝜑𝐹 finSupp 0 )
gsumpart.1 ( 𝜑Disj 𝑥𝑋 𝐶 )
gsumpart.2 ( 𝜑 𝑥𝑋 𝐶 = 𝐴 )
Assertion gsumpart ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑥𝑋 ↦ ( 𝐺 Σg ( 𝐹𝐶 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 gsumpart.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumpart.z 0 = ( 0g𝐺 )
3 gsumpart.g ( 𝜑𝐺 ∈ CMnd )
4 gsumpart.a ( 𝜑𝐴𝑉 )
5 gsumpart.x ( 𝜑𝑋𝑊 )
6 gsumpart.f ( 𝜑𝐹 : 𝐴𝐵 )
7 gsumpart.w ( 𝜑𝐹 finSupp 0 )
8 gsumpart.1 ( 𝜑Disj 𝑥𝑋 𝐶 )
9 gsumpart.2 ( 𝜑 𝑥𝑋 𝐶 = 𝐴 )
10 eqid 𝑥𝑋 ( { 𝑥 } × 𝐶 ) = 𝑥𝑋 ( { 𝑥 } × 𝐶 )
11 10 4 5 8 9 2ndresdjuf1o ( 𝜑 → ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) : 𝑥𝑋 ( { 𝑥 } × 𝐶 ) –1-1-onto𝐴 )
12 1 2 3 4 6 7 11 gsumf1o ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) ) )
13 snex { 𝑥 } ∈ V
14 13 a1i ( ( 𝜑𝑥𝑋 ) → { 𝑥 } ∈ V )
15 4 adantr ( ( 𝜑𝑥𝑋 ) → 𝐴𝑉 )
16 ssidd ( 𝜑𝐴𝐴 )
17 9 16 eqsstrd ( 𝜑 𝑥𝑋 𝐶𝐴 )
18 iunss ( 𝑥𝑋 𝐶𝐴 ↔ ∀ 𝑥𝑋 𝐶𝐴 )
19 17 18 sylib ( 𝜑 → ∀ 𝑥𝑋 𝐶𝐴 )
20 19 r19.21bi ( ( 𝜑𝑥𝑋 ) → 𝐶𝐴 )
21 15 20 ssexd ( ( 𝜑𝑥𝑋 ) → 𝐶 ∈ V )
22 14 21 xpexd ( ( 𝜑𝑥𝑋 ) → ( { 𝑥 } × 𝐶 ) ∈ V )
23 22 ralrimiva ( 𝜑 → ∀ 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ∈ V )
24 iunexg ( ( 𝑋𝑊 ∧ ∀ 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ∈ V ) → 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ∈ V )
25 5 23 24 syl2anc ( 𝜑 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ∈ V )
26 relxp Rel ( { 𝑥 } × 𝐶 )
27 26 a1i ( ( 𝜑𝑥𝑋 ) → Rel ( { 𝑥 } × 𝐶 ) )
28 27 ralrimiva ( 𝜑 → ∀ 𝑥𝑋 Rel ( { 𝑥 } × 𝐶 ) )
29 reliun ( Rel 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ↔ ∀ 𝑥𝑋 Rel ( { 𝑥 } × 𝐶 ) )
30 28 29 sylibr ( 𝜑 → Rel 𝑥𝑋 ( { 𝑥 } × 𝐶 ) )
31 dmiun dom 𝑥𝑋 ( { 𝑥 } × 𝐶 ) = 𝑥𝑋 dom ( { 𝑥 } × 𝐶 )
32 dmxpss dom ( { 𝑥 } × 𝐶 ) ⊆ { 𝑥 }
33 32 rgenw 𝑥𝑋 dom ( { 𝑥 } × 𝐶 ) ⊆ { 𝑥 }
34 ss2iun ( ∀ 𝑥𝑋 dom ( { 𝑥 } × 𝐶 ) ⊆ { 𝑥 } → 𝑥𝑋 dom ( { 𝑥 } × 𝐶 ) ⊆ 𝑥𝑋 { 𝑥 } )
35 33 34 ax-mp 𝑥𝑋 dom ( { 𝑥 } × 𝐶 ) ⊆ 𝑥𝑋 { 𝑥 }
36 31 35 eqsstri dom 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ 𝑥𝑋 { 𝑥 }
37 iunid 𝑥𝑋 { 𝑥 } = 𝑋
38 36 37 sseqtri dom 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ 𝑋
39 38 a1i ( 𝜑 → dom 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ 𝑋 )
40 fo2nd 2nd : V –onto→ V
41 fof ( 2nd : V –onto→ V → 2nd : V ⟶ V )
42 40 41 ax-mp 2nd : V ⟶ V
43 ssv 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ V
44 fssres ( ( 2nd : V ⟶ V ∧ 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ V ) → ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) : 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⟶ V )
45 42 43 44 mp2an ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) : 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⟶ V
46 ffn ( ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) : 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⟶ V → ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) Fn 𝑥𝑋 ( { 𝑥 } × 𝐶 ) )
47 45 46 mp1i ( 𝜑 → ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) Fn 𝑥𝑋 ( { 𝑥 } × 𝐶 ) )
48 djussxp2 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝑋 × 𝑥𝑋 𝐶 )
49 imass2 ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝑋 × 𝑥𝑋 𝐶 ) → ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ ( 2nd “ ( 𝑋 × 𝑥𝑋 𝐶 ) ) )
50 48 49 ax-mp ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ ( 2nd “ ( 𝑋 × 𝑥𝑋 𝐶 ) )
51 ima0 ( 2nd “ ∅ ) = ∅
52 xpeq1 ( 𝑋 = ∅ → ( 𝑋 × 𝑥𝑋 𝐶 ) = ( ∅ × 𝑥𝑋 𝐶 ) )
53 0xp ( ∅ × 𝑥𝑋 𝐶 ) = ∅
54 52 53 eqtrdi ( 𝑋 = ∅ → ( 𝑋 × 𝑥𝑋 𝐶 ) = ∅ )
55 54 imaeq2d ( 𝑋 = ∅ → ( 2nd “ ( 𝑋 × 𝑥𝑋 𝐶 ) ) = ( 2nd “ ∅ ) )
56 iuneq1 ( 𝑋 = ∅ → 𝑥𝑋 𝐶 = 𝑥 ∈ ∅ 𝐶 )
57 0iun 𝑥 ∈ ∅ 𝐶 = ∅
58 56 57 eqtrdi ( 𝑋 = ∅ → 𝑥𝑋 𝐶 = ∅ )
59 51 55 58 3eqtr4a ( 𝑋 = ∅ → ( 2nd “ ( 𝑋 × 𝑥𝑋 𝐶 ) ) = 𝑥𝑋 𝐶 )
60 59 adantl ( ( 𝜑𝑋 = ∅ ) → ( 2nd “ ( 𝑋 × 𝑥𝑋 𝐶 ) ) = 𝑥𝑋 𝐶 )
61 2ndimaxp ( 𝑋 ≠ ∅ → ( 2nd “ ( 𝑋 × 𝑥𝑋 𝐶 ) ) = 𝑥𝑋 𝐶 )
62 61 adantl ( ( 𝜑𝑋 ≠ ∅ ) → ( 2nd “ ( 𝑋 × 𝑥𝑋 𝐶 ) ) = 𝑥𝑋 𝐶 )
63 60 62 pm2.61dane ( 𝜑 → ( 2nd “ ( 𝑋 × 𝑥𝑋 𝐶 ) ) = 𝑥𝑋 𝐶 )
64 63 9 eqtrd ( 𝜑 → ( 2nd “ ( 𝑋 × 𝑥𝑋 𝐶 ) ) = 𝐴 )
65 50 64 sseqtrid ( 𝜑 → ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ 𝐴 )
66 resssxp ( ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ 𝐴 ↔ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) × 𝐴 ) )
67 65 66 sylib ( 𝜑 → ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) × 𝐴 ) )
68 dff2 ( ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) : 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⟶ 𝐴 ↔ ( ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) Fn 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ∧ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ⊆ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) × 𝐴 ) ) )
69 47 67 68 sylanbrc ( 𝜑 → ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) : 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⟶ 𝐴 )
70 6 69 fcod ( 𝜑 → ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) : 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⟶ 𝐵 )
71 10 4 5 8 9 2ndresdju ( 𝜑 → ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) : 𝑥𝑋 ( { 𝑥 } × 𝐶 ) –1-1𝐴 )
72 2 fvexi 0 ∈ V
73 72 a1i ( 𝜑0 ∈ V )
74 6 4 fexd ( 𝜑𝐹 ∈ V )
75 7 71 73 74 fsuppco ( 𝜑 → ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) finSupp 0 )
76 1 2 3 25 30 5 39 70 75 gsum2d ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) ) = ( 𝐺 Σg ( 𝑦𝑋 ↦ ( 𝐺 Σg ( 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) ) ) ) )
77 nfcsb1v 𝑥 𝑦 / 𝑥 𝐶
78 csbeq1a ( 𝑥 = 𝑦𝐶 = 𝑦 / 𝑥 𝐶 )
79 5 21 77 78 iunsnima2 ( ( 𝜑𝑦𝑋 ) → ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) = 𝑦 / 𝑥 𝐶 )
80 df-ov ( 𝑦 ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) = ( ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) ‘ ⟨ 𝑦 , 𝑧 ⟩ )
81 69 ad2antrr ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) : 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⟶ 𝐴 )
82 simplr ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → 𝑦𝑋 )
83 vsnid 𝑦 ∈ { 𝑦 }
84 83 a1i ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → 𝑦 ∈ { 𝑦 } )
85 79 eleq2d ( ( 𝜑𝑦𝑋 ) → ( 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↔ 𝑧 𝑦 / 𝑥 𝐶 ) )
86 85 biimpa ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → 𝑧 𝑦 / 𝑥 𝐶 )
87 84 86 opelxpd ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ⟨ 𝑦 , 𝑧 ⟩ ∈ ( { 𝑦 } × 𝑦 / 𝑥 𝐶 ) )
88 nfcv 𝑥 { 𝑦 }
89 88 77 nfxp 𝑥 ( { 𝑦 } × 𝑦 / 𝑥 𝐶 )
90 89 nfel2 𝑥𝑦 , 𝑧 ⟩ ∈ ( { 𝑦 } × 𝑦 / 𝑥 𝐶 )
91 sneq ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } )
92 91 78 xpeq12d ( 𝑥 = 𝑦 → ( { 𝑥 } × 𝐶 ) = ( { 𝑦 } × 𝑦 / 𝑥 𝐶 ) )
93 92 eleq2d ( 𝑥 = 𝑦 → ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( { 𝑥 } × 𝐶 ) ↔ ⟨ 𝑦 , 𝑧 ⟩ ∈ ( { 𝑦 } × 𝑦 / 𝑥 𝐶 ) ) )
94 90 93 rspce ( ( 𝑦𝑋 ∧ ⟨ 𝑦 , 𝑧 ⟩ ∈ ( { 𝑦 } × 𝑦 / 𝑥 𝐶 ) ) → ∃ 𝑥𝑋𝑦 , 𝑧 ⟩ ∈ ( { 𝑥 } × 𝐶 ) )
95 82 87 94 syl2anc ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ∃ 𝑥𝑋𝑦 , 𝑧 ⟩ ∈ ( { 𝑥 } × 𝐶 ) )
96 eliun ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ↔ ∃ 𝑥𝑋𝑦 , 𝑧 ⟩ ∈ ( { 𝑥 } × 𝐶 ) )
97 95 96 sylibr ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝑋 ( { 𝑥 } × 𝐶 ) )
98 81 97 fvco3d ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) ‘ ⟨ 𝑦 , 𝑧 ⟩ ) = ( 𝐹 ‘ ( ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ‘ ⟨ 𝑦 , 𝑧 ⟩ ) ) )
99 97 fvresd ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ‘ ⟨ 𝑦 , 𝑧 ⟩ ) = ( 2nd ‘ ⟨ 𝑦 , 𝑧 ⟩ ) )
100 vex 𝑦 ∈ V
101 vex 𝑧 ∈ V
102 100 101 op2nd ( 2nd ‘ ⟨ 𝑦 , 𝑧 ⟩ ) = 𝑧
103 99 102 eqtrdi ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ‘ ⟨ 𝑦 , 𝑧 ⟩ ) = 𝑧 )
104 103 fveq2d ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( 𝐹 ‘ ( ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ‘ ⟨ 𝑦 , 𝑧 ⟩ ) ) = ( 𝐹𝑧 ) )
105 98 104 eqtrd ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) ‘ ⟨ 𝑦 , 𝑧 ⟩ ) = ( 𝐹𝑧 ) )
106 80 105 syl5eq ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ) → ( 𝑦 ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) = ( 𝐹𝑧 ) )
107 79 106 mpteq12dva ( ( 𝜑𝑦𝑋 ) → ( 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) = ( 𝑧 𝑦 / 𝑥 𝐶 ↦ ( 𝐹𝑧 ) ) )
108 6 adantr ( ( 𝜑𝑦𝑋 ) → 𝐹 : 𝐴𝐵 )
109 imassrn ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ⊆ ran 𝑥𝑋 ( { 𝑥 } × 𝐶 )
110 9 xpeq2d ( 𝜑 → ( 𝑋 × 𝑥𝑋 𝐶 ) = ( 𝑋 × 𝐴 ) )
111 48 110 sseqtrid ( 𝜑 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝑋 × 𝐴 ) )
112 rnss ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝑋 × 𝐴 ) → ran 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ran ( 𝑋 × 𝐴 ) )
113 111 112 syl ( 𝜑 → ran 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ran ( 𝑋 × 𝐴 ) )
114 113 adantr ( ( 𝜑𝑦𝑋 ) → ran 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ ran ( 𝑋 × 𝐴 ) )
115 rnxpss ran ( 𝑋 × 𝐴 ) ⊆ 𝐴
116 114 115 sstrdi ( ( 𝜑𝑦𝑋 ) → ran 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ⊆ 𝐴 )
117 109 116 sstrid ( ( 𝜑𝑦𝑋 ) → ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ⊆ 𝐴 )
118 79 117 eqsstrrd ( ( 𝜑𝑦𝑋 ) → 𝑦 / 𝑥 𝐶𝐴 )
119 108 118 feqresmpt ( ( 𝜑𝑦𝑋 ) → ( 𝐹 𝑦 / 𝑥 𝐶 ) = ( 𝑧 𝑦 / 𝑥 𝐶 ↦ ( 𝐹𝑧 ) ) )
120 107 119 eqtr4d ( ( 𝜑𝑦𝑋 ) → ( 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) = ( 𝐹 𝑦 / 𝑥 𝐶 ) )
121 120 oveq2d ( ( 𝜑𝑦𝑋 ) → ( 𝐺 Σg ( 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) ) = ( 𝐺 Σg ( 𝐹 𝑦 / 𝑥 𝐶 ) ) )
122 121 mpteq2dva ( 𝜑 → ( 𝑦𝑋 ↦ ( 𝐺 Σg ( 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) ) ) = ( 𝑦𝑋 ↦ ( 𝐺 Σg ( 𝐹 𝑦 / 𝑥 𝐶 ) ) ) )
123 nfcv 𝑦 ( 𝐺 Σg ( 𝐹𝐶 ) )
124 nfcv 𝑥 𝐺
125 nfcv 𝑥 Σg
126 nfcv 𝑥 𝐹
127 126 77 nfres 𝑥 ( 𝐹 𝑦 / 𝑥 𝐶 )
128 124 125 127 nfov 𝑥 ( 𝐺 Σg ( 𝐹 𝑦 / 𝑥 𝐶 ) )
129 78 reseq2d ( 𝑥 = 𝑦 → ( 𝐹𝐶 ) = ( 𝐹 𝑦 / 𝑥 𝐶 ) )
130 129 oveq2d ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝐹𝐶 ) ) = ( 𝐺 Σg ( 𝐹 𝑦 / 𝑥 𝐶 ) ) )
131 123 128 130 cbvmpt ( 𝑥𝑋 ↦ ( 𝐺 Σg ( 𝐹𝐶 ) ) ) = ( 𝑦𝑋 ↦ ( 𝐺 Σg ( 𝐹 𝑦 / 𝑥 𝐶 ) ) )
132 122 131 eqtr4di ( 𝜑 → ( 𝑦𝑋 ↦ ( 𝐺 Σg ( 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) ) ) = ( 𝑥𝑋 ↦ ( 𝐺 Σg ( 𝐹𝐶 ) ) ) )
133 132 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝑦𝑋 ↦ ( 𝐺 Σg ( 𝑧 ∈ ( 𝑥𝑋 ( { 𝑥 } × 𝐶 ) “ { 𝑦 } ) ↦ ( 𝑦 ( 𝐹 ∘ ( 2nd 𝑥𝑋 ( { 𝑥 } × 𝐶 ) ) ) 𝑧 ) ) ) ) ) = ( 𝐺 Σg ( 𝑥𝑋 ↦ ( 𝐺 Σg ( 𝐹𝐶 ) ) ) ) )
134 12 76 133 3eqtrd ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑥𝑋 ↦ ( 𝐺 Σg ( 𝐹𝐶 ) ) ) ) )