Step |
Hyp |
Ref |
Expression |
1 |
|
gsumhashmul.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumhashmul.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumhashmul.x |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
gsumhashmul.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
5 |
|
gsumhashmul.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
6 |
|
gsumhashmul.1 |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
7 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
8 |
7 5
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
9 |
5 8
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) = ( 𝐺 Σg ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
11 |
|
relfsupp |
⊢ Rel finSupp |
12 |
11
|
brrelex1i |
⊢ ( 𝐹 finSupp 0 → 𝐹 ∈ V ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
14 |
5
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
15 |
13 14
|
fndmexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
16 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
17 |
1 2 4 15 5 16 6
|
gsumres |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) = ( 𝐺 Σg 𝐹 ) ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑥 = ( 1st ‘ 𝑧 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) |
20 |
6
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
21 |
|
ssidd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐵 ) |
22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
23 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝑥 ∈ 𝐴 ) |
24 |
22 23
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
25 |
5
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
26 |
|
funrel |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
27 |
|
reldif |
⊢ ( Rel 𝐹 → Rel ( 𝐹 ∖ ( V × { 0 } ) ) ) |
28 |
25 26 27
|
3syl |
⊢ ( 𝜑 → Rel ( 𝐹 ∖ ( V × { 0 } ) ) ) |
29 |
|
1stdm |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 1st ‘ 𝑧 ) ∈ dom ( 𝐹 ∖ ( V × { 0 } ) ) ) |
30 |
28 29
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 1st ‘ 𝑧 ) ∈ dom ( 𝐹 ∖ ( V × { 0 } ) ) ) |
31 |
2
|
fvexi |
⊢ 0 ∈ V |
32 |
31
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
33 |
|
fressupp |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 ∖ ( V × { 0 } ) ) ) |
34 |
25 13 32 33
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 ∖ ( V × { 0 } ) ) ) |
35 |
34
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = dom ( 𝐹 ∖ ( V × { 0 } ) ) ) |
36 |
7
|
a1i |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ dom 𝐹 ) |
37 |
|
ssdmres |
⊢ ( ( 𝐹 supp 0 ) ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 supp 0 ) ) |
38 |
36 37
|
sylib |
⊢ ( 𝜑 → dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 supp 0 ) ) |
39 |
35 38
|
eqtr3d |
⊢ ( 𝜑 → dom ( 𝐹 ∖ ( V × { 0 } ) ) = ( 𝐹 supp 0 ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → dom ( 𝐹 ∖ ( V × { 0 } ) ) = ( 𝐹 supp 0 ) ) |
41 |
30 40
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 1st ‘ 𝑧 ) ∈ ( 𝐹 supp 0 ) ) |
42 |
25
|
funresd |
⊢ ( 𝜑 → Fun ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → Fun ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
44 |
38
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↔ 𝑥 ∈ ( 𝐹 supp 0 ) ) ) |
45 |
44
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝑥 ∈ dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝑥 ∈ ( 𝐹 supp 0 ) ) |
47 |
46
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
48 |
|
funopfvb |
⊢ ( ( Fun ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∧ 𝑥 ∈ dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ↔ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) ) |
49 |
48
|
biimpa |
⊢ ( ( ( Fun ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∧ 𝑥 ∈ dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
50 |
43 45 47 49
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
51 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 ∖ ( V × { 0 } ) ) ) |
52 |
50 51
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
53 |
|
eqeq2 |
⊢ ( 𝑣 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 → ( 𝑧 = 𝑣 ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) |
54 |
53
|
bibi2d |
⊢ ( 𝑣 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 → ( ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 𝑣 ) ↔ ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) ) |
55 |
54
|
ralbidv |
⊢ ( 𝑣 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 → ( ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 𝑣 ) ↔ ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑣 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) → ( ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 𝑣 ) ↔ ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) ) |
57 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → ( 2nd ‘ 𝑧 ) ∈ V ) |
58 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → Rel ( 𝐹 ∖ ( V × { 0 } ) ) ) |
59 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
60 |
|
1st2nd |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
61 |
58 59 60
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
62 |
|
opeq1 |
⊢ ( 𝑥 = ( 1st ‘ 𝑧 ) → 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
63 |
62
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
64 |
61 63
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 = 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ) |
65 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ∖ ( V × { 0 } ) ) ⊆ 𝐹 ) |
66 |
65
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → 𝑧 ∈ 𝐹 ) |
67 |
66
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 ∈ 𝐹 ) |
68 |
64 67
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝐹 ) |
69 |
64 68
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → ( 𝑧 = 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∧ 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝐹 ) ) |
70 |
|
opeq2 |
⊢ ( 𝑦 = ( 2nd ‘ 𝑧 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ) |
71 |
70
|
eqeq2d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑧 ) → ( 𝑧 = 〈 𝑥 , 𝑦 〉 ↔ 𝑧 = 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ) ) |
72 |
70
|
eleq1d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑧 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ↔ 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝐹 ) ) |
73 |
71 72
|
anbi12d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑧 ) → ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ↔ ( 𝑧 = 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∧ 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝐹 ) ) ) |
74 |
57 69 73
|
spcedv |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
75 |
|
vex |
⊢ 𝑥 ∈ V |
76 |
75
|
elsnres |
⊢ ( 𝑧 ∈ ( 𝐹 ↾ { 𝑥 } ) ↔ ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
77 |
74 76
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 ∈ ( 𝐹 ↾ { 𝑥 } ) ) |
78 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝐹 Fn 𝐴 ) |
79 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑥 ∈ 𝐴 ) |
80 |
|
fnressn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
81 |
78 79 80
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
82 |
77 81
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 ∈ { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
83 |
|
elsni |
⊢ ( 𝑧 ∈ { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } → 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) |
84 |
82 83
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) |
85 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) → 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) |
86 |
85
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) → ( 1st ‘ 𝑧 ) = ( 1st ‘ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) |
87 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
88 |
75 87
|
op1st |
⊢ ( 1st ‘ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) = 𝑥 |
89 |
86 88
|
eqtr2di |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) → 𝑥 = ( 1st ‘ 𝑧 ) ) |
90 |
84 89
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) |
91 |
90
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) |
92 |
52 56 91
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ∃ 𝑣 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 𝑣 ) ) |
93 |
|
reu6 |
⊢ ( ∃! 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) 𝑥 = ( 1st ‘ 𝑧 ) ↔ ∃ 𝑣 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 𝑣 ) ) |
94 |
92 93
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ∃! 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) 𝑥 = ( 1st ‘ 𝑧 ) ) |
95 |
18 1 2 19 4 20 21 24 41 94
|
gsummptf1o |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) ) ) |
96 |
10 17 95
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) ) ) |
97 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
98 |
97
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → 𝑧 ∈ 𝐹 ) |
99 |
|
funfv1st2nd |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐹 ) → ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) = ( 2nd ‘ 𝑧 ) ) |
100 |
25 98 99
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) = ( 2nd ‘ 𝑧 ) ) |
101 |
100
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 2nd ‘ 𝑧 ) ) ) |
102 |
101
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) ) = ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 2nd ‘ 𝑧 ) ) ) ) |
103 |
96 102
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 2nd ‘ 𝑧 ) ) ) ) |
104 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 1st ‘ 𝑡 ) |
105 |
|
fvex |
⊢ ( 2nd ‘ 𝑡 ) ∈ V |
106 |
|
fvex |
⊢ ( 1st ‘ 𝑡 ) ∈ V |
107 |
105 106
|
op2ndd |
⊢ ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 → ( 2nd ‘ 𝑧 ) = ( 1st ‘ 𝑡 ) ) |
108 |
|
resfnfinfin |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐹 supp 0 ) ∈ Fin ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin ) |
109 |
14 20 108
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin ) |
110 |
34 109
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐹 ∖ ( V × { 0 } ) ) ∈ Fin ) |
111 |
34
|
rneqd |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ran ( 𝐹 ∖ ( V × { 0 } ) ) ) |
112 |
|
rnresss |
⊢ ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ⊆ ran 𝐹 |
113 |
5
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐵 ) |
114 |
112 113
|
sstrid |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ⊆ 𝐵 ) |
115 |
111 114
|
eqsstrrd |
⊢ ( 𝜑 → ran ( 𝐹 ∖ ( V × { 0 } ) ) ⊆ 𝐵 ) |
116 |
|
2ndrn |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ran ( 𝐹 ∖ ( V × { 0 } ) ) ) |
117 |
28 116
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ran ( 𝐹 ∖ ( V × { 0 } ) ) ) |
118 |
|
relcnv |
⊢ Rel ◡ 𝐹 |
119 |
|
reldif |
⊢ ( Rel ◡ 𝐹 → Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
120 |
118 119
|
mp1i |
⊢ ( 𝜑 → Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
121 |
|
1st2nd |
⊢ ( ( Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → 𝑡 = 〈 ( 1st ‘ 𝑡 ) , ( 2nd ‘ 𝑡 ) 〉 ) |
122 |
120 121
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → 𝑡 = 〈 ( 1st ‘ 𝑡 ) , ( 2nd ‘ 𝑡 ) 〉 ) |
123 |
|
cnvdif |
⊢ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) = ( ◡ 𝐹 ∖ ◡ ( V × { 0 } ) ) |
124 |
|
cnvxp |
⊢ ◡ ( V × { 0 } ) = ( { 0 } × V ) |
125 |
124
|
difeq2i |
⊢ ( ◡ 𝐹 ∖ ◡ ( V × { 0 } ) ) = ( ◡ 𝐹 ∖ ( { 0 } × V ) ) |
126 |
123 125
|
eqtri |
⊢ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) = ( ◡ 𝐹 ∖ ( { 0 } × V ) ) |
127 |
126
|
eqimss2i |
⊢ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) |
128 |
127
|
a1i |
⊢ ( 𝜑 → ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
129 |
128
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → 𝑡 ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
130 |
122 129
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → 〈 ( 1st ‘ 𝑡 ) , ( 2nd ‘ 𝑡 ) 〉 ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
131 |
106 105
|
opelcnv |
⊢ ( 〈 ( 1st ‘ 𝑡 ) , ( 2nd ‘ 𝑡 ) 〉 ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ↔ 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
132 |
130 131
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
133 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → Rel ( 𝐹 ∖ ( V × { 0 } ) ) ) |
134 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∪ ◡ { 𝑧 } = ∪ ◡ { 𝑧 } ) |
135 |
|
cnvf1olem |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ∪ ◡ { 𝑧 } = ∪ ◡ { 𝑧 } ) ) → ( ∪ ◡ { 𝑧 } ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑧 = ∪ ◡ { ∪ ◡ { 𝑧 } } ) ) |
136 |
135
|
simpld |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ∪ ◡ { 𝑧 } = ∪ ◡ { 𝑧 } ) ) → ∪ ◡ { 𝑧 } ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
137 |
133 97 134 136
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∪ ◡ { 𝑧 } ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
138 |
137 126
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∪ ◡ { 𝑧 } ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
139 |
|
eqeq2 |
⊢ ( 𝑢 = ∪ ◡ { 𝑧 } → ( 𝑡 = 𝑢 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) |
140 |
139
|
bibi2d |
⊢ ( 𝑢 = ∪ ◡ { 𝑧 } → ( ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = 𝑢 ) ↔ ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) ) |
141 |
140
|
ralbidv |
⊢ ( 𝑢 = ∪ ◡ { 𝑧 } → ( ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = 𝑢 ) ↔ ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) ) |
142 |
141
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑢 = ∪ ◡ { 𝑧 } ) → ( ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = 𝑢 ) ↔ ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) ) |
143 |
118 119
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
144 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
145 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
146 |
|
df-rel |
⊢ ( Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↔ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ( V × V ) ) |
147 |
120 146
|
sylib |
⊢ ( 𝜑 → ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ( V × V ) ) |
148 |
147
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ( V × V ) ) |
149 |
148 144
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → 𝑡 ∈ ( V × V ) ) |
150 |
|
2nd1st |
⊢ ( 𝑡 ∈ ( V × V ) → ∪ ◡ { 𝑡 } = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
151 |
149 150
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → ∪ ◡ { 𝑡 } = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
152 |
145 151
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → 𝑧 = ∪ ◡ { 𝑡 } ) |
153 |
|
cnvf1olem |
⊢ ( ( Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ 𝑧 = ∪ ◡ { 𝑡 } ) ) → ( 𝑧 ∈ ◡ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) ) |
154 |
153
|
simprd |
⊢ ( ( Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ 𝑧 = ∪ ◡ { 𝑡 } ) ) → 𝑡 = ∪ ◡ { 𝑧 } ) |
155 |
143 144 152 154
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → 𝑡 = ∪ ◡ { 𝑧 } ) |
156 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → Rel ( 𝐹 ∖ ( V × { 0 } ) ) ) |
157 |
97
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
158 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑡 = ∪ ◡ { 𝑧 } ) |
159 |
|
cnvf1olem |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) ) → ( 𝑡 ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑧 = ∪ ◡ { 𝑡 } ) ) |
160 |
159
|
simprd |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) ) → 𝑧 = ∪ ◡ { 𝑡 } ) |
161 |
156 157 158 160
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑧 = ∪ ◡ { 𝑡 } ) |
162 |
147
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ( V × V ) ) |
163 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
164 |
162 163
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑡 ∈ ( V × V ) ) |
165 |
164 150
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → ∪ ◡ { 𝑡 } = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
166 |
161 165
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
167 |
155 166
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) |
168 |
167
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) |
169 |
138 142 168
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∃ 𝑢 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = 𝑢 ) ) |
170 |
|
reu6 |
⊢ ( ∃! 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ ∃ 𝑢 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = 𝑢 ) ) |
171 |
169 170
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∃! 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
172 |
104 1 2 107 4 110 115 117 132 171
|
gsummptf1o |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 2nd ‘ 𝑧 ) ) ) = ( 𝐺 Σg ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑡 ) ) ) ) |
173 |
|
fveq2 |
⊢ ( 𝑡 = 𝑧 → ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑧 ) ) |
174 |
173
|
cbvmptv |
⊢ ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑡 ) ) = ( 𝑧 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑧 ) ) |
175 |
34
|
cnveqd |
⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
176 |
175 126
|
eqtr2di |
⊢ ( 𝜑 → ( ◡ 𝐹 ∖ ( { 0 } × V ) ) = ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
177 |
176
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑧 ) ) = ( 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 1st ‘ 𝑧 ) ) ) |
178 |
174 177
|
syl5eq |
⊢ ( 𝜑 → ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑡 ) ) = ( 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 1st ‘ 𝑧 ) ) ) |
179 |
178
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑡 ) ) ) = ( 𝐺 Σg ( 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 1st ‘ 𝑧 ) ) ) ) |
180 |
103 172 179
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 1st ‘ 𝑧 ) ) ) ) |
181 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 1st ‘ 𝑧 ) |
182 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
183 |
|
vex |
⊢ 𝑦 ∈ V |
184 |
75 183
|
op1std |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
185 |
|
relcnv |
⊢ Rel ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) |
186 |
185
|
a1i |
⊢ ( 𝜑 → Rel ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
187 |
|
cnvfi |
⊢ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin → ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin ) |
188 |
109 187
|
syl |
⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin ) |
189 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ran 𝐹 ⊆ 𝐵 ) |
190 |
185
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → Rel ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
191 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
192 |
|
1stdm |
⊢ ( ( Rel ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
193 |
190 191 192
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
194 |
|
df-rn |
⊢ ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) |
195 |
193 194
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
196 |
112 195
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ran 𝐹 ) |
197 |
189 196
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ 𝐵 ) |
198 |
181 182 1 184 186 188 4 197
|
gsummpt2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 1st ‘ 𝑧 ) ) ) = ( 𝐺 Σg ( 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) ) ) ) |
199 |
|
df-ima |
⊢ ( 𝐹 “ ( 𝐹 supp 0 ) ) = ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) |
200 |
|
supppreima |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) |
201 |
25 13 32 200
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) |
202 |
201
|
imaeq2d |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝐹 supp 0 ) ) = ( 𝐹 “ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) ) |
203 |
199 202
|
eqtr3id |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 “ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) ) |
204 |
|
funimacnv |
⊢ ( Fun 𝐹 → ( 𝐹 “ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) = ( ( ran 𝐹 ∖ { 0 } ) ∩ ran 𝐹 ) ) |
205 |
25 204
|
syl |
⊢ ( 𝜑 → ( 𝐹 “ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) = ( ( ran 𝐹 ∖ { 0 } ) ∩ ran 𝐹 ) ) |
206 |
|
difssd |
⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) |
207 |
|
df-ss |
⊢ ( ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ↔ ( ( ran 𝐹 ∖ { 0 } ) ∩ ran 𝐹 ) = ( ran 𝐹 ∖ { 0 } ) ) |
208 |
206 207
|
sylib |
⊢ ( 𝜑 → ( ( ran 𝐹 ∖ { 0 } ) ∩ ran 𝐹 ) = ( ran 𝐹 ∖ { 0 } ) ) |
209 |
203 205 208
|
3eqtrd |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( ran 𝐹 ∖ { 0 } ) ) |
210 |
194 209
|
eqtr3id |
⊢ ( 𝜑 → dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( ran 𝐹 ∖ { 0 } ) ) |
211 |
4
|
cmnmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
212 |
211
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → 𝐺 ∈ Mnd ) |
213 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin ) |
214 |
|
imafi2 |
⊢ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin → ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ∈ Fin ) |
215 |
213 187 214
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ∈ Fin ) |
216 |
194 114
|
eqsstrrid |
⊢ ( 𝜑 → dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ⊆ 𝐵 ) |
217 |
216
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → 𝑥 ∈ 𝐵 ) |
218 |
1 3
|
gsumconst |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) = ( ( ♯ ‘ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ) · 𝑥 ) ) |
219 |
212 215 217 218
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) = ( ( ♯ ‘ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ) · 𝑥 ) ) |
220 |
|
cnvresima |
⊢ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) = ( ( ◡ 𝐹 “ { 𝑥 } ) ∩ ( 𝐹 supp 0 ) ) |
221 |
210
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↔ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) |
222 |
221
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) |
223 |
222
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → { 𝑥 } ⊆ ( ran 𝐹 ∖ { 0 } ) ) |
224 |
|
sspreima |
⊢ ( ( Fun 𝐹 ∧ { 𝑥 } ⊆ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) |
225 |
25 223 224
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) |
226 |
201
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) |
227 |
225 226
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ( 𝐹 supp 0 ) ) |
228 |
|
df-ss |
⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ( 𝐹 supp 0 ) ↔ ( ( ◡ 𝐹 “ { 𝑥 } ) ∩ ( 𝐹 supp 0 ) ) = ( ◡ 𝐹 “ { 𝑥 } ) ) |
229 |
227 228
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ( ◡ 𝐹 “ { 𝑥 } ) ∩ ( 𝐹 supp 0 ) ) = ( ◡ 𝐹 “ { 𝑥 } ) ) |
230 |
220 229
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ) |
231 |
230
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( ♯ ‘ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ) ) |
232 |
231
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) · 𝑥 ) = ( ( ♯ ‘ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ) · 𝑥 ) ) |
233 |
219 232
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) = ( ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) · 𝑥 ) ) |
234 |
210 233
|
mpteq12dva |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) ) = ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) · 𝑥 ) ) ) |
235 |
234
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) ) ) = ( 𝐺 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) · 𝑥 ) ) ) ) |
236 |
180 198 235
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) · 𝑥 ) ) ) ) |