| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumhashmul.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsumhashmul.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsumhashmul.x |
⊢ · = ( .g ‘ 𝐺 ) |
| 4 |
|
gsumhashmul.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 5 |
|
gsumhashmul.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 6 |
|
gsumhashmul.1 |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 7 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
| 8 |
7 5
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 9 |
5 8
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) = ( 𝐺 Σg ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 11 |
|
relfsupp |
⊢ Rel finSupp |
| 12 |
11
|
brrelex1i |
⊢ ( 𝐹 finSupp 0 → 𝐹 ∈ V ) |
| 13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 14 |
5
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 15 |
13 14
|
fndmexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 16 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 17 |
1 2 4 15 5 16 6
|
gsumres |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) = ( 𝐺 Σg 𝐹 ) ) |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑥 = ( 1st ‘ 𝑧 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) |
| 20 |
6
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 21 |
|
ssidd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐵 ) |
| 22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 23 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝑥 ∈ 𝐴 ) |
| 24 |
22 23
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 25 |
5
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 26 |
|
funrel |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
| 27 |
|
reldif |
⊢ ( Rel 𝐹 → Rel ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 28 |
25 26 27
|
3syl |
⊢ ( 𝜑 → Rel ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 29 |
|
1stdm |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 1st ‘ 𝑧 ) ∈ dom ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 30 |
28 29
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 1st ‘ 𝑧 ) ∈ dom ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 31 |
2
|
fvexi |
⊢ 0 ∈ V |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 33 |
|
fressupp |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 34 |
25 13 32 33
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 35 |
34
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = dom ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 36 |
7
|
a1i |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ dom 𝐹 ) |
| 37 |
|
ssdmres |
⊢ ( ( 𝐹 supp 0 ) ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 38 |
36 37
|
sylib |
⊢ ( 𝜑 → dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 39 |
35 38
|
eqtr3d |
⊢ ( 𝜑 → dom ( 𝐹 ∖ ( V × { 0 } ) ) = ( 𝐹 supp 0 ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → dom ( 𝐹 ∖ ( V × { 0 } ) ) = ( 𝐹 supp 0 ) ) |
| 41 |
30 40
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 1st ‘ 𝑧 ) ∈ ( 𝐹 supp 0 ) ) |
| 42 |
25
|
funresd |
⊢ ( 𝜑 → Fun ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → Fun ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 44 |
38
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↔ 𝑥 ∈ ( 𝐹 supp 0 ) ) ) |
| 45 |
44
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝑥 ∈ dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝑥 ∈ ( 𝐹 supp 0 ) ) |
| 47 |
46
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 48 |
|
funopfvb |
⊢ ( ( Fun ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∧ 𝑥 ∈ dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ↔ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) ) |
| 49 |
48
|
biimpa |
⊢ ( ( ( Fun ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∧ 𝑥 ∈ dom ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) ∧ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 50 |
43 45 47 49
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 51 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 52 |
50 51
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 53 |
|
eqeq2 |
⊢ ( 𝑣 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 → ( 𝑧 = 𝑣 ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) |
| 54 |
53
|
bibi2d |
⊢ ( 𝑣 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 → ( ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 𝑣 ) ↔ ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) ) |
| 55 |
54
|
ralbidv |
⊢ ( 𝑣 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 → ( ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 𝑣 ) ↔ ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) ) |
| 56 |
55
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑣 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) → ( ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 𝑣 ) ↔ ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) ) |
| 57 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → ( 2nd ‘ 𝑧 ) ∈ V ) |
| 58 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → Rel ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 59 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 60 |
|
1st2nd |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 61 |
58 59 60
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 62 |
|
opeq1 |
⊢ ( 𝑥 = ( 1st ‘ 𝑧 ) → 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 63 |
62
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 64 |
61 63
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 = 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ) |
| 65 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ∖ ( V × { 0 } ) ) ⊆ 𝐹 ) |
| 66 |
65
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → 𝑧 ∈ 𝐹 ) |
| 67 |
66
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 ∈ 𝐹 ) |
| 68 |
64 67
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝐹 ) |
| 69 |
64 68
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → ( 𝑧 = 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∧ 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝐹 ) ) |
| 70 |
|
opeq2 |
⊢ ( 𝑦 = ( 2nd ‘ 𝑧 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ) |
| 71 |
70
|
eqeq2d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑧 ) → ( 𝑧 = 〈 𝑥 , 𝑦 〉 ↔ 𝑧 = 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 72 |
70
|
eleq1d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑧 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ↔ 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝐹 ) ) |
| 73 |
71 72
|
anbi12d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑧 ) → ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ↔ ( 𝑧 = 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∧ 〈 𝑥 , ( 2nd ‘ 𝑧 ) 〉 ∈ 𝐹 ) ) ) |
| 74 |
57 69 73
|
spcedv |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
| 75 |
|
vex |
⊢ 𝑥 ∈ V |
| 76 |
75
|
elsnres |
⊢ ( 𝑧 ∈ ( 𝐹 ↾ { 𝑥 } ) ↔ ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
| 77 |
74 76
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 ∈ ( 𝐹 ↾ { 𝑥 } ) ) |
| 78 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝐹 Fn 𝐴 ) |
| 79 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑥 ∈ 𝐴 ) |
| 80 |
|
fnressn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
| 81 |
78 79 80
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
| 82 |
77 81
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 ∈ { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
| 83 |
|
elsni |
⊢ ( 𝑧 ∈ { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } → 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) |
| 84 |
82 83
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑥 = ( 1st ‘ 𝑧 ) ) → 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) |
| 85 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) → 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) |
| 86 |
85
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) → ( 1st ‘ 𝑧 ) = ( 1st ‘ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) |
| 87 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 88 |
75 87
|
op1st |
⊢ ( 1st ‘ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) = 𝑥 |
| 89 |
86 88
|
eqtr2di |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) → 𝑥 = ( 1st ‘ 𝑧 ) ) |
| 90 |
84 89
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) |
| 91 |
90
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) ) |
| 92 |
52 56 91
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ∃ 𝑣 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 𝑣 ) ) |
| 93 |
|
reu6 |
⊢ ( ∃! 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) 𝑥 = ( 1st ‘ 𝑧 ) ↔ ∃ 𝑣 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∀ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ( 𝑥 = ( 1st ‘ 𝑧 ) ↔ 𝑧 = 𝑣 ) ) |
| 94 |
92 93
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ∃! 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) 𝑥 = ( 1st ‘ 𝑧 ) ) |
| 95 |
18 1 2 19 4 20 21 24 41 94
|
gsummptf1o |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) ) ) |
| 96 |
10 17 95
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) ) ) |
| 97 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 98 |
97
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → 𝑧 ∈ 𝐹 ) |
| 99 |
|
funfv1st2nd |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐹 ) → ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) = ( 2nd ‘ 𝑧 ) ) |
| 100 |
25 98 99
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) = ( 2nd ‘ 𝑧 ) ) |
| 101 |
100
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 2nd ‘ 𝑧 ) ) ) |
| 102 |
101
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) ) = ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 2nd ‘ 𝑧 ) ) ) ) |
| 103 |
96 102
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 2nd ‘ 𝑧 ) ) ) ) |
| 104 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 1st ‘ 𝑡 ) |
| 105 |
|
fvex |
⊢ ( 2nd ‘ 𝑡 ) ∈ V |
| 106 |
|
fvex |
⊢ ( 1st ‘ 𝑡 ) ∈ V |
| 107 |
105 106
|
op2ndd |
⊢ ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 → ( 2nd ‘ 𝑧 ) = ( 1st ‘ 𝑡 ) ) |
| 108 |
|
resfnfinfin |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐹 supp 0 ) ∈ Fin ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin ) |
| 109 |
14 20 108
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin ) |
| 110 |
34 109
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐹 ∖ ( V × { 0 } ) ) ∈ Fin ) |
| 111 |
34
|
rneqd |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ran ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 112 |
|
rnresss |
⊢ ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ⊆ ran 𝐹 |
| 113 |
5
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐵 ) |
| 114 |
112 113
|
sstrid |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ⊆ 𝐵 ) |
| 115 |
111 114
|
eqsstrrd |
⊢ ( 𝜑 → ran ( 𝐹 ∖ ( V × { 0 } ) ) ⊆ 𝐵 ) |
| 116 |
|
2ndrn |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ran ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 117 |
28 116
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ran ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 118 |
|
relcnv |
⊢ Rel ◡ 𝐹 |
| 119 |
|
reldif |
⊢ ( Rel ◡ 𝐹 → Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
| 120 |
118 119
|
mp1i |
⊢ ( 𝜑 → Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
| 121 |
|
1st2nd |
⊢ ( ( Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → 𝑡 = 〈 ( 1st ‘ 𝑡 ) , ( 2nd ‘ 𝑡 ) 〉 ) |
| 122 |
120 121
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → 𝑡 = 〈 ( 1st ‘ 𝑡 ) , ( 2nd ‘ 𝑡 ) 〉 ) |
| 123 |
|
cnvdif |
⊢ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) = ( ◡ 𝐹 ∖ ◡ ( V × { 0 } ) ) |
| 124 |
|
cnvxp |
⊢ ◡ ( V × { 0 } ) = ( { 0 } × V ) |
| 125 |
124
|
difeq2i |
⊢ ( ◡ 𝐹 ∖ ◡ ( V × { 0 } ) ) = ( ◡ 𝐹 ∖ ( { 0 } × V ) ) |
| 126 |
123 125
|
eqtri |
⊢ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) = ( ◡ 𝐹 ∖ ( { 0 } × V ) ) |
| 127 |
126
|
eqimss2i |
⊢ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) |
| 128 |
127
|
a1i |
⊢ ( 𝜑 → ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 129 |
128
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → 𝑡 ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 130 |
122 129
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → 〈 ( 1st ‘ 𝑡 ) , ( 2nd ‘ 𝑡 ) 〉 ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 131 |
106 105
|
opelcnv |
⊢ ( 〈 ( 1st ‘ 𝑡 ) , ( 2nd ‘ 𝑡 ) 〉 ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ↔ 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 132 |
130 131
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 133 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → Rel ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 134 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∪ ◡ { 𝑧 } = ∪ ◡ { 𝑧 } ) |
| 135 |
|
cnvf1olem |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ∪ ◡ { 𝑧 } = ∪ ◡ { 𝑧 } ) ) → ( ∪ ◡ { 𝑧 } ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑧 = ∪ ◡ { ∪ ◡ { 𝑧 } } ) ) |
| 136 |
135
|
simpld |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ∪ ◡ { 𝑧 } = ∪ ◡ { 𝑧 } ) ) → ∪ ◡ { 𝑧 } ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 137 |
133 97 134 136
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∪ ◡ { 𝑧 } ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 138 |
137 126
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∪ ◡ { 𝑧 } ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
| 139 |
|
eqeq2 |
⊢ ( 𝑢 = ∪ ◡ { 𝑧 } → ( 𝑡 = 𝑢 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) |
| 140 |
139
|
bibi2d |
⊢ ( 𝑢 = ∪ ◡ { 𝑧 } → ( ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = 𝑢 ) ↔ ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) ) |
| 141 |
140
|
ralbidv |
⊢ ( 𝑢 = ∪ ◡ { 𝑧 } → ( ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = 𝑢 ) ↔ ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) ) |
| 142 |
141
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑢 = ∪ ◡ { 𝑧 } ) → ( ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = 𝑢 ) ↔ ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) ) |
| 143 |
118 119
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
| 144 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
| 145 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
| 146 |
|
df-rel |
⊢ ( Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↔ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ( V × V ) ) |
| 147 |
120 146
|
sylib |
⊢ ( 𝜑 → ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ( V × V ) ) |
| 148 |
147
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ( V × V ) ) |
| 149 |
148 144
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → 𝑡 ∈ ( V × V ) ) |
| 150 |
|
2nd1st |
⊢ ( 𝑡 ∈ ( V × V ) → ∪ ◡ { 𝑡 } = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
| 151 |
149 150
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → ∪ ◡ { 𝑡 } = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
| 152 |
145 151
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → 𝑧 = ∪ ◡ { 𝑡 } ) |
| 153 |
|
cnvf1olem |
⊢ ( ( Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ 𝑧 = ∪ ◡ { 𝑡 } ) ) → ( 𝑧 ∈ ◡ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) ) |
| 154 |
153
|
simprd |
⊢ ( ( Rel ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∧ 𝑧 = ∪ ◡ { 𝑡 } ) ) → 𝑡 = ∪ ◡ { 𝑧 } ) |
| 155 |
143 144 152 154
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) → 𝑡 = ∪ ◡ { 𝑧 } ) |
| 156 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → Rel ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 157 |
97
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 158 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑡 = ∪ ◡ { 𝑧 } ) |
| 159 |
|
cnvf1olem |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) ) → ( 𝑡 ∈ ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑧 = ∪ ◡ { 𝑡 } ) ) |
| 160 |
159
|
simprd |
⊢ ( ( Rel ( 𝐹 ∖ ( V × { 0 } ) ) ∧ ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) ) → 𝑧 = ∪ ◡ { 𝑡 } ) |
| 161 |
156 157 158 160
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑧 = ∪ ◡ { 𝑡 } ) |
| 162 |
147
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ⊆ ( V × V ) ) |
| 163 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) |
| 164 |
162 163
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑡 ∈ ( V × V ) ) |
| 165 |
164 150
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → ∪ ◡ { 𝑡 } = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
| 166 |
161 165
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) ∧ 𝑡 = ∪ ◡ { 𝑧 } ) → 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
| 167 |
155 166
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) ∧ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ) → ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) |
| 168 |
167
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = ∪ ◡ { 𝑧 } ) ) |
| 169 |
138 142 168
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∃ 𝑢 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = 𝑢 ) ) |
| 170 |
|
reu6 |
⊢ ( ∃! 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ ∃ 𝑢 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ∀ 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ( 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ↔ 𝑡 = 𝑢 ) ) |
| 171 |
169 170
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ) → ∃! 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) 𝑧 = 〈 ( 2nd ‘ 𝑡 ) , ( 1st ‘ 𝑡 ) 〉 ) |
| 172 |
104 1 2 107 4 110 115 117 132 171
|
gsummptf1o |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑧 ∈ ( 𝐹 ∖ ( V × { 0 } ) ) ↦ ( 2nd ‘ 𝑧 ) ) ) = ( 𝐺 Σg ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑡 ) ) ) ) |
| 173 |
|
fveq2 |
⊢ ( 𝑡 = 𝑧 → ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑧 ) ) |
| 174 |
173
|
cbvmptv |
⊢ ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑡 ) ) = ( 𝑧 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑧 ) ) |
| 175 |
34
|
cnveqd |
⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ◡ ( 𝐹 ∖ ( V × { 0 } ) ) ) |
| 176 |
175 126
|
eqtr2di |
⊢ ( 𝜑 → ( ◡ 𝐹 ∖ ( { 0 } × V ) ) = ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 177 |
176
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑧 ) ) = ( 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 1st ‘ 𝑧 ) ) ) |
| 178 |
174 177
|
eqtrid |
⊢ ( 𝜑 → ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑡 ) ) = ( 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 1st ‘ 𝑧 ) ) ) |
| 179 |
178
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑡 ∈ ( ◡ 𝐹 ∖ ( { 0 } × V ) ) ↦ ( 1st ‘ 𝑡 ) ) ) = ( 𝐺 Σg ( 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 1st ‘ 𝑧 ) ) ) ) |
| 180 |
103 172 179
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 1st ‘ 𝑧 ) ) ) ) |
| 181 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 1st ‘ 𝑧 ) |
| 182 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 183 |
|
vex |
⊢ 𝑦 ∈ V |
| 184 |
75 183
|
op1std |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
| 185 |
|
relcnv |
⊢ Rel ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) |
| 186 |
185
|
a1i |
⊢ ( 𝜑 → Rel ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 187 |
|
cnvfi |
⊢ ( ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin → ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin ) |
| 188 |
109 187
|
syl |
⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin ) |
| 189 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ran 𝐹 ⊆ 𝐵 ) |
| 190 |
185
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → Rel ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 191 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 192 |
|
1stdm |
⊢ ( ( Rel ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 193 |
190 191 192
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 194 |
|
df-rn |
⊢ ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) |
| 195 |
193 194
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) |
| 196 |
112 195
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 197 |
189 196
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ 𝐵 ) |
| 198 |
181 182 1 184 186 188 4 197
|
gsummpt2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑧 ∈ ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 1st ‘ 𝑧 ) ) ) = ( 𝐺 Σg ( 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) ) ) ) |
| 199 |
|
df-ima |
⊢ ( 𝐹 “ ( 𝐹 supp 0 ) ) = ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) |
| 200 |
|
supppreima |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) |
| 201 |
25 13 32 200
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) |
| 202 |
201
|
imaeq2d |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝐹 supp 0 ) ) = ( 𝐹 “ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) ) |
| 203 |
199 202
|
eqtr3id |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝐹 “ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) ) |
| 204 |
|
funimacnv |
⊢ ( Fun 𝐹 → ( 𝐹 “ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) = ( ( ran 𝐹 ∖ { 0 } ) ∩ ran 𝐹 ) ) |
| 205 |
25 204
|
syl |
⊢ ( 𝜑 → ( 𝐹 “ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) = ( ( ran 𝐹 ∖ { 0 } ) ∩ ran 𝐹 ) ) |
| 206 |
|
difssd |
⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) |
| 207 |
|
dfss2 |
⊢ ( ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ↔ ( ( ran 𝐹 ∖ { 0 } ) ∩ ran 𝐹 ) = ( ran 𝐹 ∖ { 0 } ) ) |
| 208 |
206 207
|
sylib |
⊢ ( 𝜑 → ( ( ran 𝐹 ∖ { 0 } ) ∩ ran 𝐹 ) = ( ran 𝐹 ∖ { 0 } ) ) |
| 209 |
203 205 208
|
3eqtrd |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( ran 𝐹 ∖ { 0 } ) ) |
| 210 |
194 209
|
eqtr3id |
⊢ ( 𝜑 → dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( ran 𝐹 ∖ { 0 } ) ) |
| 211 |
4
|
cmnmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 212 |
211
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → 𝐺 ∈ Mnd ) |
| 213 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin ) |
| 214 |
|
imafi2 |
⊢ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ∈ Fin → ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ∈ Fin ) |
| 215 |
213 187 214
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ∈ Fin ) |
| 216 |
194 114
|
eqsstrrid |
⊢ ( 𝜑 → dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ⊆ 𝐵 ) |
| 217 |
216
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 218 |
1 3
|
gsumconst |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) = ( ( ♯ ‘ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ) · 𝑥 ) ) |
| 219 |
212 215 217 218
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) = ( ( ♯ ‘ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ) · 𝑥 ) ) |
| 220 |
|
cnvresima |
⊢ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) = ( ( ◡ 𝐹 “ { 𝑥 } ) ∩ ( 𝐹 supp 0 ) ) |
| 221 |
210
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↔ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) |
| 222 |
221
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) |
| 223 |
222
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → { 𝑥 } ⊆ ( ran 𝐹 ∖ { 0 } ) ) |
| 224 |
|
sspreima |
⊢ ( ( Fun 𝐹 ∧ { 𝑥 } ⊆ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) |
| 225 |
25 223 224
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) |
| 226 |
201
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( ran 𝐹 ∖ { 0 } ) ) ) |
| 227 |
225 226
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ( 𝐹 supp 0 ) ) |
| 228 |
|
dfss2 |
⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ( 𝐹 supp 0 ) ↔ ( ( ◡ 𝐹 “ { 𝑥 } ) ∩ ( 𝐹 supp 0 ) ) = ( ◡ 𝐹 “ { 𝑥 } ) ) |
| 229 |
227 228
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ( ◡ 𝐹 “ { 𝑥 } ) ∩ ( 𝐹 supp 0 ) ) = ( ◡ 𝐹 “ { 𝑥 } ) ) |
| 230 |
220 229
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ) |
| 231 |
230
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( ♯ ‘ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ) ) |
| 232 |
231
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) · 𝑥 ) = ( ( ♯ ‘ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ) · 𝑥 ) ) |
| 233 |
219 232
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) = ( ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) · 𝑥 ) ) |
| 234 |
210 233
|
mpteq12dva |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) ) = ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) · 𝑥 ) ) ) |
| 235 |
234
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ dom ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ↦ ( 𝐺 Σg ( 𝑦 ∈ ( ◡ ( 𝐹 ↾ ( 𝐹 supp 0 ) ) “ { 𝑥 } ) ↦ 𝑥 ) ) ) ) = ( 𝐺 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) · 𝑥 ) ) ) ) |
| 236 |
180 198 235
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( ♯ ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) · 𝑥 ) ) ) ) |