| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumhashmul.b |
|
| 2 |
|
gsumhashmul.z |
|
| 3 |
|
gsumhashmul.x |
|
| 4 |
|
gsumhashmul.g |
|
| 5 |
|
gsumhashmul.f |
|
| 6 |
|
gsumhashmul.1 |
|
| 7 |
|
suppssdm |
|
| 8 |
7 5
|
fssdm |
|
| 9 |
5 8
|
feqresmpt |
|
| 10 |
9
|
oveq2d |
|
| 11 |
|
relfsupp |
|
| 12 |
11
|
brrelex1i |
|
| 13 |
6 12
|
syl |
|
| 14 |
5
|
ffnd |
|
| 15 |
13 14
|
fndmexd |
|
| 16 |
|
ssidd |
|
| 17 |
1 2 4 15 5 16 6
|
gsumres |
|
| 18 |
|
nfcv |
|
| 19 |
|
fveq2 |
|
| 20 |
6
|
fsuppimpd |
|
| 21 |
|
ssidd |
|
| 22 |
5
|
adantr |
|
| 23 |
8
|
sselda |
|
| 24 |
22 23
|
ffvelcdmd |
|
| 25 |
5
|
ffund |
|
| 26 |
|
funrel |
|
| 27 |
|
reldif |
|
| 28 |
25 26 27
|
3syl |
|
| 29 |
|
1stdm |
|
| 30 |
28 29
|
sylan |
|
| 31 |
2
|
fvexi |
|
| 32 |
31
|
a1i |
|
| 33 |
|
fressupp |
|
| 34 |
25 13 32 33
|
syl3anc |
|
| 35 |
34
|
dmeqd |
|
| 36 |
7
|
a1i |
|
| 37 |
|
ssdmres |
|
| 38 |
36 37
|
sylib |
|
| 39 |
35 38
|
eqtr3d |
|
| 40 |
39
|
adantr |
|
| 41 |
30 40
|
eleqtrd |
|
| 42 |
25
|
funresd |
|
| 43 |
42
|
adantr |
|
| 44 |
38
|
eleq2d |
|
| 45 |
44
|
biimpar |
|
| 46 |
|
simpr |
|
| 47 |
46
|
fvresd |
|
| 48 |
|
funopfvb |
|
| 49 |
48
|
biimpa |
|
| 50 |
43 45 47 49
|
syl21anc |
|
| 51 |
34
|
adantr |
|
| 52 |
50 51
|
eleqtrd |
|
| 53 |
|
eqeq2 |
|
| 54 |
53
|
bibi2d |
|
| 55 |
54
|
ralbidv |
|
| 56 |
55
|
adantl |
|
| 57 |
|
fvexd |
|
| 58 |
28
|
ad3antrrr |
|
| 59 |
|
simplr |
|
| 60 |
|
1st2nd |
|
| 61 |
58 59 60
|
syl2anc |
|
| 62 |
|
opeq1 |
|
| 63 |
62
|
adantl |
|
| 64 |
61 63
|
eqtr4d |
|
| 65 |
|
difssd |
|
| 66 |
65
|
sselda |
|
| 67 |
66
|
adantr |
|
| 68 |
64 67
|
eqeltrrd |
|
| 69 |
64 68
|
jca |
|
| 70 |
|
opeq2 |
|
| 71 |
70
|
eqeq2d |
|
| 72 |
70
|
eleq1d |
|
| 73 |
71 72
|
anbi12d |
|
| 74 |
57 69 73
|
spcedv |
|
| 75 |
|
vex |
|
| 76 |
75
|
elsnres |
|
| 77 |
74 76
|
sylibr |
|
| 78 |
14
|
ad3antrrr |
|
| 79 |
23
|
ad2antrr |
|
| 80 |
|
fnressn |
|
| 81 |
78 79 80
|
syl2anc |
|
| 82 |
77 81
|
eleqtrd |
|
| 83 |
|
elsni |
|
| 84 |
82 83
|
syl |
|
| 85 |
|
simpr |
|
| 86 |
85
|
fveq2d |
|
| 87 |
|
fvex |
|
| 88 |
75 87
|
op1st |
|
| 89 |
86 88
|
eqtr2di |
|
| 90 |
84 89
|
impbida |
|
| 91 |
90
|
ralrimiva |
|
| 92 |
52 56 91
|
rspcedvd |
|
| 93 |
|
reu6 |
|
| 94 |
92 93
|
sylibr |
|
| 95 |
18 1 2 19 4 20 21 24 41 94
|
gsummptf1o |
|
| 96 |
10 17 95
|
3eqtr3d |
|
| 97 |
|
simpr |
|
| 98 |
97
|
eldifad |
|
| 99 |
|
funfv1st2nd |
|
| 100 |
25 98 99
|
syl2an2r |
|
| 101 |
100
|
mpteq2dva |
|
| 102 |
101
|
oveq2d |
|
| 103 |
96 102
|
eqtrd |
|
| 104 |
|
nfcv |
|
| 105 |
|
fvex |
|
| 106 |
|
fvex |
|
| 107 |
105 106
|
op2ndd |
|
| 108 |
|
resfnfinfin |
|
| 109 |
14 20 108
|
syl2anc |
|
| 110 |
34 109
|
eqeltrrd |
|
| 111 |
34
|
rneqd |
|
| 112 |
|
rnresss |
|
| 113 |
5
|
frnd |
|
| 114 |
112 113
|
sstrid |
|
| 115 |
111 114
|
eqsstrrd |
|
| 116 |
|
2ndrn |
|
| 117 |
28 116
|
sylan |
|
| 118 |
|
relcnv |
|
| 119 |
|
reldif |
|
| 120 |
118 119
|
mp1i |
|
| 121 |
|
1st2nd |
|
| 122 |
120 121
|
sylan |
|
| 123 |
|
cnvdif |
|
| 124 |
|
cnvxp |
|
| 125 |
124
|
difeq2i |
|
| 126 |
123 125
|
eqtri |
|
| 127 |
126
|
eqimss2i |
|
| 128 |
127
|
a1i |
|
| 129 |
128
|
sselda |
|
| 130 |
122 129
|
eqeltrrd |
|
| 131 |
106 105
|
opelcnv |
|
| 132 |
130 131
|
sylib |
|
| 133 |
28
|
adantr |
|
| 134 |
|
eqidd |
|
| 135 |
|
cnvf1olem |
|
| 136 |
135
|
simpld |
|
| 137 |
133 97 134 136
|
syl12anc |
|
| 138 |
137 126
|
eleqtrdi |
|
| 139 |
|
eqeq2 |
|
| 140 |
139
|
bibi2d |
|
| 141 |
140
|
ralbidv |
|
| 142 |
141
|
adantl |
|
| 143 |
118 119
|
mp1i |
|
| 144 |
|
simplr |
|
| 145 |
|
simpr |
|
| 146 |
|
df-rel |
|
| 147 |
120 146
|
sylib |
|
| 148 |
147
|
ad3antrrr |
|
| 149 |
148 144
|
sseldd |
|
| 150 |
|
2nd1st |
|
| 151 |
149 150
|
syl |
|
| 152 |
145 151
|
eqtr4d |
|
| 153 |
|
cnvf1olem |
|
| 154 |
153
|
simprd |
|
| 155 |
143 144 152 154
|
syl12anc |
|
| 156 |
28
|
ad3antrrr |
|
| 157 |
97
|
ad2antrr |
|
| 158 |
|
simpr |
|
| 159 |
|
cnvf1olem |
|
| 160 |
159
|
simprd |
|
| 161 |
156 157 158 160
|
syl12anc |
|
| 162 |
147
|
ad3antrrr |
|
| 163 |
|
simplr |
|
| 164 |
162 163
|
sseldd |
|
| 165 |
164 150
|
syl |
|
| 166 |
161 165
|
eqtrd |
|
| 167 |
155 166
|
impbida |
|
| 168 |
167
|
ralrimiva |
|
| 169 |
138 142 168
|
rspcedvd |
|
| 170 |
|
reu6 |
|
| 171 |
169 170
|
sylibr |
|
| 172 |
104 1 2 107 4 110 115 117 132 171
|
gsummptf1o |
|
| 173 |
|
fveq2 |
|
| 174 |
173
|
cbvmptv |
|
| 175 |
34
|
cnveqd |
|
| 176 |
175 126
|
eqtr2di |
|
| 177 |
176
|
mpteq1d |
|
| 178 |
174 177
|
eqtrid |
|
| 179 |
178
|
oveq2d |
|
| 180 |
103 172 179
|
3eqtrd |
|
| 181 |
|
nfcv |
|
| 182 |
|
nfv |
|
| 183 |
|
vex |
|
| 184 |
75 183
|
op1std |
|
| 185 |
|
relcnv |
|
| 186 |
185
|
a1i |
|
| 187 |
|
cnvfi |
|
| 188 |
109 187
|
syl |
|
| 189 |
113
|
adantr |
|
| 190 |
185
|
a1i |
|
| 191 |
|
simpr |
|
| 192 |
|
1stdm |
|
| 193 |
190 191 192
|
syl2anc |
|
| 194 |
|
df-rn |
|
| 195 |
193 194
|
eleqtrrdi |
|
| 196 |
112 195
|
sselid |
|
| 197 |
189 196
|
sseldd |
|
| 198 |
181 182 1 184 186 188 4 197
|
gsummpt2d |
|
| 199 |
|
df-ima |
|
| 200 |
|
supppreima |
|
| 201 |
25 13 32 200
|
syl3anc |
|
| 202 |
201
|
imaeq2d |
|
| 203 |
199 202
|
eqtr3id |
|
| 204 |
|
funimacnv |
|
| 205 |
25 204
|
syl |
|
| 206 |
|
difssd |
|
| 207 |
|
dfss2 |
|
| 208 |
206 207
|
sylib |
|
| 209 |
203 205 208
|
3eqtrd |
|
| 210 |
194 209
|
eqtr3id |
|
| 211 |
4
|
cmnmndd |
|
| 212 |
211
|
adantr |
|
| 213 |
109
|
adantr |
|
| 214 |
|
imafi2 |
|
| 215 |
213 187 214
|
3syl |
|
| 216 |
194 114
|
eqsstrrid |
|
| 217 |
216
|
sselda |
|
| 218 |
1 3
|
gsumconst |
|
| 219 |
212 215 217 218
|
syl3anc |
|
| 220 |
|
cnvresima |
|
| 221 |
210
|
eleq2d |
|
| 222 |
221
|
biimpa |
|
| 223 |
222
|
snssd |
|
| 224 |
|
sspreima |
|
| 225 |
25 223 224
|
syl2an2r |
|
| 226 |
201
|
adantr |
|
| 227 |
225 226
|
sseqtrrd |
|
| 228 |
|
dfss2 |
|
| 229 |
227 228
|
sylib |
|
| 230 |
220 229
|
eqtr2id |
|
| 231 |
230
|
fveq2d |
|
| 232 |
231
|
oveq1d |
|
| 233 |
219 232
|
eqtr4d |
|
| 234 |
210 233
|
mpteq12dva |
|
| 235 |
234
|
oveq2d |
|
| 236 |
180 198 235
|
3eqtrd |
|