Metamath Proof Explorer


Theorem reldif

Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998)

Ref Expression
Assertion reldif RelARelAB

Proof

Step Hyp Ref Expression
1 difss ABA
2 relss ABARelARelAB
3 1 2 ax-mp RelARelAB