| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumhashmul.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumhashmul.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumhashmul.x |
|- .x. = ( .g ` G ) |
| 4 |
|
gsumhashmul.g |
|- ( ph -> G e. CMnd ) |
| 5 |
|
gsumhashmul.f |
|- ( ph -> F : A --> B ) |
| 6 |
|
gsumhashmul.1 |
|- ( ph -> F finSupp .0. ) |
| 7 |
|
suppssdm |
|- ( F supp .0. ) C_ dom F |
| 8 |
7 5
|
fssdm |
|- ( ph -> ( F supp .0. ) C_ A ) |
| 9 |
5 8
|
feqresmpt |
|- ( ph -> ( F |` ( F supp .0. ) ) = ( x e. ( F supp .0. ) |-> ( F ` x ) ) ) |
| 10 |
9
|
oveq2d |
|- ( ph -> ( G gsum ( F |` ( F supp .0. ) ) ) = ( G gsum ( x e. ( F supp .0. ) |-> ( F ` x ) ) ) ) |
| 11 |
|
relfsupp |
|- Rel finSupp |
| 12 |
11
|
brrelex1i |
|- ( F finSupp .0. -> F e. _V ) |
| 13 |
6 12
|
syl |
|- ( ph -> F e. _V ) |
| 14 |
5
|
ffnd |
|- ( ph -> F Fn A ) |
| 15 |
13 14
|
fndmexd |
|- ( ph -> A e. _V ) |
| 16 |
|
ssidd |
|- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
| 17 |
1 2 4 15 5 16 6
|
gsumres |
|- ( ph -> ( G gsum ( F |` ( F supp .0. ) ) ) = ( G gsum F ) ) |
| 18 |
|
nfcv |
|- F/_ x ( F ` ( 1st ` z ) ) |
| 19 |
|
fveq2 |
|- ( x = ( 1st ` z ) -> ( F ` x ) = ( F ` ( 1st ` z ) ) ) |
| 20 |
6
|
fsuppimpd |
|- ( ph -> ( F supp .0. ) e. Fin ) |
| 21 |
|
ssidd |
|- ( ph -> B C_ B ) |
| 22 |
5
|
adantr |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> F : A --> B ) |
| 23 |
8
|
sselda |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> x e. A ) |
| 24 |
22 23
|
ffvelcdmd |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> ( F ` x ) e. B ) |
| 25 |
5
|
ffund |
|- ( ph -> Fun F ) |
| 26 |
|
funrel |
|- ( Fun F -> Rel F ) |
| 27 |
|
reldif |
|- ( Rel F -> Rel ( F \ ( _V X. { .0. } ) ) ) |
| 28 |
25 26 27
|
3syl |
|- ( ph -> Rel ( F \ ( _V X. { .0. } ) ) ) |
| 29 |
|
1stdm |
|- ( ( Rel ( F \ ( _V X. { .0. } ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> ( 1st ` z ) e. dom ( F \ ( _V X. { .0. } ) ) ) |
| 30 |
28 29
|
sylan |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> ( 1st ` z ) e. dom ( F \ ( _V X. { .0. } ) ) ) |
| 31 |
2
|
fvexi |
|- .0. e. _V |
| 32 |
31
|
a1i |
|- ( ph -> .0. e. _V ) |
| 33 |
|
fressupp |
|- ( ( Fun F /\ F e. _V /\ .0. e. _V ) -> ( F |` ( F supp .0. ) ) = ( F \ ( _V X. { .0. } ) ) ) |
| 34 |
25 13 32 33
|
syl3anc |
|- ( ph -> ( F |` ( F supp .0. ) ) = ( F \ ( _V X. { .0. } ) ) ) |
| 35 |
34
|
dmeqd |
|- ( ph -> dom ( F |` ( F supp .0. ) ) = dom ( F \ ( _V X. { .0. } ) ) ) |
| 36 |
7
|
a1i |
|- ( ph -> ( F supp .0. ) C_ dom F ) |
| 37 |
|
ssdmres |
|- ( ( F supp .0. ) C_ dom F <-> dom ( F |` ( F supp .0. ) ) = ( F supp .0. ) ) |
| 38 |
36 37
|
sylib |
|- ( ph -> dom ( F |` ( F supp .0. ) ) = ( F supp .0. ) ) |
| 39 |
35 38
|
eqtr3d |
|- ( ph -> dom ( F \ ( _V X. { .0. } ) ) = ( F supp .0. ) ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> dom ( F \ ( _V X. { .0. } ) ) = ( F supp .0. ) ) |
| 41 |
30 40
|
eleqtrd |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> ( 1st ` z ) e. ( F supp .0. ) ) |
| 42 |
25
|
funresd |
|- ( ph -> Fun ( F |` ( F supp .0. ) ) ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> Fun ( F |` ( F supp .0. ) ) ) |
| 44 |
38
|
eleq2d |
|- ( ph -> ( x e. dom ( F |` ( F supp .0. ) ) <-> x e. ( F supp .0. ) ) ) |
| 45 |
44
|
biimpar |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> x e. dom ( F |` ( F supp .0. ) ) ) |
| 46 |
|
simpr |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> x e. ( F supp .0. ) ) |
| 47 |
46
|
fvresd |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> ( ( F |` ( F supp .0. ) ) ` x ) = ( F ` x ) ) |
| 48 |
|
funopfvb |
|- ( ( Fun ( F |` ( F supp .0. ) ) /\ x e. dom ( F |` ( F supp .0. ) ) ) -> ( ( ( F |` ( F supp .0. ) ) ` x ) = ( F ` x ) <-> <. x , ( F ` x ) >. e. ( F |` ( F supp .0. ) ) ) ) |
| 49 |
48
|
biimpa |
|- ( ( ( Fun ( F |` ( F supp .0. ) ) /\ x e. dom ( F |` ( F supp .0. ) ) ) /\ ( ( F |` ( F supp .0. ) ) ` x ) = ( F ` x ) ) -> <. x , ( F ` x ) >. e. ( F |` ( F supp .0. ) ) ) |
| 50 |
43 45 47 49
|
syl21anc |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> <. x , ( F ` x ) >. e. ( F |` ( F supp .0. ) ) ) |
| 51 |
34
|
adantr |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> ( F |` ( F supp .0. ) ) = ( F \ ( _V X. { .0. } ) ) ) |
| 52 |
50 51
|
eleqtrd |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> <. x , ( F ` x ) >. e. ( F \ ( _V X. { .0. } ) ) ) |
| 53 |
|
eqeq2 |
|- ( v = <. x , ( F ` x ) >. -> ( z = v <-> z = <. x , ( F ` x ) >. ) ) |
| 54 |
53
|
bibi2d |
|- ( v = <. x , ( F ` x ) >. -> ( ( x = ( 1st ` z ) <-> z = v ) <-> ( x = ( 1st ` z ) <-> z = <. x , ( F ` x ) >. ) ) ) |
| 55 |
54
|
ralbidv |
|- ( v = <. x , ( F ` x ) >. -> ( A. z e. ( F \ ( _V X. { .0. } ) ) ( x = ( 1st ` z ) <-> z = v ) <-> A. z e. ( F \ ( _V X. { .0. } ) ) ( x = ( 1st ` z ) <-> z = <. x , ( F ` x ) >. ) ) ) |
| 56 |
55
|
adantl |
|- ( ( ( ph /\ x e. ( F supp .0. ) ) /\ v = <. x , ( F ` x ) >. ) -> ( A. z e. ( F \ ( _V X. { .0. } ) ) ( x = ( 1st ` z ) <-> z = v ) <-> A. z e. ( F \ ( _V X. { .0. } ) ) ( x = ( 1st ` z ) <-> z = <. x , ( F ` x ) >. ) ) ) |
| 57 |
|
fvexd |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> ( 2nd ` z ) e. _V ) |
| 58 |
28
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> Rel ( F \ ( _V X. { .0. } ) ) ) |
| 59 |
|
simplr |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> z e. ( F \ ( _V X. { .0. } ) ) ) |
| 60 |
|
1st2nd |
|- ( ( Rel ( F \ ( _V X. { .0. } ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 61 |
58 59 60
|
syl2anc |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 62 |
|
opeq1 |
|- ( x = ( 1st ` z ) -> <. x , ( 2nd ` z ) >. = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 63 |
62
|
adantl |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> <. x , ( 2nd ` z ) >. = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 64 |
61 63
|
eqtr4d |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> z = <. x , ( 2nd ` z ) >. ) |
| 65 |
|
difssd |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> ( F \ ( _V X. { .0. } ) ) C_ F ) |
| 66 |
65
|
sselda |
|- ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> z e. F ) |
| 67 |
66
|
adantr |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> z e. F ) |
| 68 |
64 67
|
eqeltrrd |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> <. x , ( 2nd ` z ) >. e. F ) |
| 69 |
64 68
|
jca |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> ( z = <. x , ( 2nd ` z ) >. /\ <. x , ( 2nd ` z ) >. e. F ) ) |
| 70 |
|
opeq2 |
|- ( y = ( 2nd ` z ) -> <. x , y >. = <. x , ( 2nd ` z ) >. ) |
| 71 |
70
|
eqeq2d |
|- ( y = ( 2nd ` z ) -> ( z = <. x , y >. <-> z = <. x , ( 2nd ` z ) >. ) ) |
| 72 |
70
|
eleq1d |
|- ( y = ( 2nd ` z ) -> ( <. x , y >. e. F <-> <. x , ( 2nd ` z ) >. e. F ) ) |
| 73 |
71 72
|
anbi12d |
|- ( y = ( 2nd ` z ) -> ( ( z = <. x , y >. /\ <. x , y >. e. F ) <-> ( z = <. x , ( 2nd ` z ) >. /\ <. x , ( 2nd ` z ) >. e. F ) ) ) |
| 74 |
57 69 73
|
spcedv |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> E. y ( z = <. x , y >. /\ <. x , y >. e. F ) ) |
| 75 |
|
vex |
|- x e. _V |
| 76 |
75
|
elsnres |
|- ( z e. ( F |` { x } ) <-> E. y ( z = <. x , y >. /\ <. x , y >. e. F ) ) |
| 77 |
74 76
|
sylibr |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> z e. ( F |` { x } ) ) |
| 78 |
14
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> F Fn A ) |
| 79 |
23
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> x e. A ) |
| 80 |
|
fnressn |
|- ( ( F Fn A /\ x e. A ) -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
| 81 |
78 79 80
|
syl2anc |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
| 82 |
77 81
|
eleqtrd |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> z e. { <. x , ( F ` x ) >. } ) |
| 83 |
|
elsni |
|- ( z e. { <. x , ( F ` x ) >. } -> z = <. x , ( F ` x ) >. ) |
| 84 |
82 83
|
syl |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ x = ( 1st ` z ) ) -> z = <. x , ( F ` x ) >. ) |
| 85 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ z = <. x , ( F ` x ) >. ) -> z = <. x , ( F ` x ) >. ) |
| 86 |
85
|
fveq2d |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ z = <. x , ( F ` x ) >. ) -> ( 1st ` z ) = ( 1st ` <. x , ( F ` x ) >. ) ) |
| 87 |
|
fvex |
|- ( F ` x ) e. _V |
| 88 |
75 87
|
op1st |
|- ( 1st ` <. x , ( F ` x ) >. ) = x |
| 89 |
86 88
|
eqtr2di |
|- ( ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ z = <. x , ( F ` x ) >. ) -> x = ( 1st ` z ) ) |
| 90 |
84 89
|
impbida |
|- ( ( ( ph /\ x e. ( F supp .0. ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> ( x = ( 1st ` z ) <-> z = <. x , ( F ` x ) >. ) ) |
| 91 |
90
|
ralrimiva |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> A. z e. ( F \ ( _V X. { .0. } ) ) ( x = ( 1st ` z ) <-> z = <. x , ( F ` x ) >. ) ) |
| 92 |
52 56 91
|
rspcedvd |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> E. v e. ( F \ ( _V X. { .0. } ) ) A. z e. ( F \ ( _V X. { .0. } ) ) ( x = ( 1st ` z ) <-> z = v ) ) |
| 93 |
|
reu6 |
|- ( E! z e. ( F \ ( _V X. { .0. } ) ) x = ( 1st ` z ) <-> E. v e. ( F \ ( _V X. { .0. } ) ) A. z e. ( F \ ( _V X. { .0. } ) ) ( x = ( 1st ` z ) <-> z = v ) ) |
| 94 |
92 93
|
sylibr |
|- ( ( ph /\ x e. ( F supp .0. ) ) -> E! z e. ( F \ ( _V X. { .0. } ) ) x = ( 1st ` z ) ) |
| 95 |
18 1 2 19 4 20 21 24 41 94
|
gsummptf1o |
|- ( ph -> ( G gsum ( x e. ( F supp .0. ) |-> ( F ` x ) ) ) = ( G gsum ( z e. ( F \ ( _V X. { .0. } ) ) |-> ( F ` ( 1st ` z ) ) ) ) ) |
| 96 |
10 17 95
|
3eqtr3d |
|- ( ph -> ( G gsum F ) = ( G gsum ( z e. ( F \ ( _V X. { .0. } ) ) |-> ( F ` ( 1st ` z ) ) ) ) ) |
| 97 |
|
simpr |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> z e. ( F \ ( _V X. { .0. } ) ) ) |
| 98 |
97
|
eldifad |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> z e. F ) |
| 99 |
|
funfv1st2nd |
|- ( ( Fun F /\ z e. F ) -> ( F ` ( 1st ` z ) ) = ( 2nd ` z ) ) |
| 100 |
25 98 99
|
syl2an2r |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> ( F ` ( 1st ` z ) ) = ( 2nd ` z ) ) |
| 101 |
100
|
mpteq2dva |
|- ( ph -> ( z e. ( F \ ( _V X. { .0. } ) ) |-> ( F ` ( 1st ` z ) ) ) = ( z e. ( F \ ( _V X. { .0. } ) ) |-> ( 2nd ` z ) ) ) |
| 102 |
101
|
oveq2d |
|- ( ph -> ( G gsum ( z e. ( F \ ( _V X. { .0. } ) ) |-> ( F ` ( 1st ` z ) ) ) ) = ( G gsum ( z e. ( F \ ( _V X. { .0. } ) ) |-> ( 2nd ` z ) ) ) ) |
| 103 |
96 102
|
eqtrd |
|- ( ph -> ( G gsum F ) = ( G gsum ( z e. ( F \ ( _V X. { .0. } ) ) |-> ( 2nd ` z ) ) ) ) |
| 104 |
|
nfcv |
|- F/_ z ( 1st ` t ) |
| 105 |
|
fvex |
|- ( 2nd ` t ) e. _V |
| 106 |
|
fvex |
|- ( 1st ` t ) e. _V |
| 107 |
105 106
|
op2ndd |
|- ( z = <. ( 2nd ` t ) , ( 1st ` t ) >. -> ( 2nd ` z ) = ( 1st ` t ) ) |
| 108 |
|
resfnfinfin |
|- ( ( F Fn A /\ ( F supp .0. ) e. Fin ) -> ( F |` ( F supp .0. ) ) e. Fin ) |
| 109 |
14 20 108
|
syl2anc |
|- ( ph -> ( F |` ( F supp .0. ) ) e. Fin ) |
| 110 |
34 109
|
eqeltrrd |
|- ( ph -> ( F \ ( _V X. { .0. } ) ) e. Fin ) |
| 111 |
34
|
rneqd |
|- ( ph -> ran ( F |` ( F supp .0. ) ) = ran ( F \ ( _V X. { .0. } ) ) ) |
| 112 |
|
rnresss |
|- ran ( F |` ( F supp .0. ) ) C_ ran F |
| 113 |
5
|
frnd |
|- ( ph -> ran F C_ B ) |
| 114 |
112 113
|
sstrid |
|- ( ph -> ran ( F |` ( F supp .0. ) ) C_ B ) |
| 115 |
111 114
|
eqsstrrd |
|- ( ph -> ran ( F \ ( _V X. { .0. } ) ) C_ B ) |
| 116 |
|
2ndrn |
|- ( ( Rel ( F \ ( _V X. { .0. } ) ) /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> ( 2nd ` z ) e. ran ( F \ ( _V X. { .0. } ) ) ) |
| 117 |
28 116
|
sylan |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> ( 2nd ` z ) e. ran ( F \ ( _V X. { .0. } ) ) ) |
| 118 |
|
relcnv |
|- Rel `' F |
| 119 |
|
reldif |
|- ( Rel `' F -> Rel ( `' F \ ( { .0. } X. _V ) ) ) |
| 120 |
118 119
|
mp1i |
|- ( ph -> Rel ( `' F \ ( { .0. } X. _V ) ) ) |
| 121 |
|
1st2nd |
|- ( ( Rel ( `' F \ ( { .0. } X. _V ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) -> t = <. ( 1st ` t ) , ( 2nd ` t ) >. ) |
| 122 |
120 121
|
sylan |
|- ( ( ph /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) -> t = <. ( 1st ` t ) , ( 2nd ` t ) >. ) |
| 123 |
|
cnvdif |
|- `' ( F \ ( _V X. { .0. } ) ) = ( `' F \ `' ( _V X. { .0. } ) ) |
| 124 |
|
cnvxp |
|- `' ( _V X. { .0. } ) = ( { .0. } X. _V ) |
| 125 |
124
|
difeq2i |
|- ( `' F \ `' ( _V X. { .0. } ) ) = ( `' F \ ( { .0. } X. _V ) ) |
| 126 |
123 125
|
eqtri |
|- `' ( F \ ( _V X. { .0. } ) ) = ( `' F \ ( { .0. } X. _V ) ) |
| 127 |
126
|
eqimss2i |
|- ( `' F \ ( { .0. } X. _V ) ) C_ `' ( F \ ( _V X. { .0. } ) ) |
| 128 |
127
|
a1i |
|- ( ph -> ( `' F \ ( { .0. } X. _V ) ) C_ `' ( F \ ( _V X. { .0. } ) ) ) |
| 129 |
128
|
sselda |
|- ( ( ph /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) -> t e. `' ( F \ ( _V X. { .0. } ) ) ) |
| 130 |
122 129
|
eqeltrrd |
|- ( ( ph /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) -> <. ( 1st ` t ) , ( 2nd ` t ) >. e. `' ( F \ ( _V X. { .0. } ) ) ) |
| 131 |
106 105
|
opelcnv |
|- ( <. ( 1st ` t ) , ( 2nd ` t ) >. e. `' ( F \ ( _V X. { .0. } ) ) <-> <. ( 2nd ` t ) , ( 1st ` t ) >. e. ( F \ ( _V X. { .0. } ) ) ) |
| 132 |
130 131
|
sylib |
|- ( ( ph /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) -> <. ( 2nd ` t ) , ( 1st ` t ) >. e. ( F \ ( _V X. { .0. } ) ) ) |
| 133 |
28
|
adantr |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> Rel ( F \ ( _V X. { .0. } ) ) ) |
| 134 |
|
eqidd |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> U. `' { z } = U. `' { z } ) |
| 135 |
|
cnvf1olem |
|- ( ( Rel ( F \ ( _V X. { .0. } ) ) /\ ( z e. ( F \ ( _V X. { .0. } ) ) /\ U. `' { z } = U. `' { z } ) ) -> ( U. `' { z } e. `' ( F \ ( _V X. { .0. } ) ) /\ z = U. `' { U. `' { z } } ) ) |
| 136 |
135
|
simpld |
|- ( ( Rel ( F \ ( _V X. { .0. } ) ) /\ ( z e. ( F \ ( _V X. { .0. } ) ) /\ U. `' { z } = U. `' { z } ) ) -> U. `' { z } e. `' ( F \ ( _V X. { .0. } ) ) ) |
| 137 |
133 97 134 136
|
syl12anc |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> U. `' { z } e. `' ( F \ ( _V X. { .0. } ) ) ) |
| 138 |
137 126
|
eleqtrdi |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> U. `' { z } e. ( `' F \ ( { .0. } X. _V ) ) ) |
| 139 |
|
eqeq2 |
|- ( u = U. `' { z } -> ( t = u <-> t = U. `' { z } ) ) |
| 140 |
139
|
bibi2d |
|- ( u = U. `' { z } -> ( ( z = <. ( 2nd ` t ) , ( 1st ` t ) >. <-> t = u ) <-> ( z = <. ( 2nd ` t ) , ( 1st ` t ) >. <-> t = U. `' { z } ) ) ) |
| 141 |
140
|
ralbidv |
|- ( u = U. `' { z } -> ( A. t e. ( `' F \ ( { .0. } X. _V ) ) ( z = <. ( 2nd ` t ) , ( 1st ` t ) >. <-> t = u ) <-> A. t e. ( `' F \ ( { .0. } X. _V ) ) ( z = <. ( 2nd ` t ) , ( 1st ` t ) >. <-> t = U. `' { z } ) ) ) |
| 142 |
141
|
adantl |
|- ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ u = U. `' { z } ) -> ( A. t e. ( `' F \ ( { .0. } X. _V ) ) ( z = <. ( 2nd ` t ) , ( 1st ` t ) >. <-> t = u ) <-> A. t e. ( `' F \ ( { .0. } X. _V ) ) ( z = <. ( 2nd ` t ) , ( 1st ` t ) >. <-> t = U. `' { z } ) ) ) |
| 143 |
118 119
|
mp1i |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ z = <. ( 2nd ` t ) , ( 1st ` t ) >. ) -> Rel ( `' F \ ( { .0. } X. _V ) ) ) |
| 144 |
|
simplr |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ z = <. ( 2nd ` t ) , ( 1st ` t ) >. ) -> t e. ( `' F \ ( { .0. } X. _V ) ) ) |
| 145 |
|
simpr |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ z = <. ( 2nd ` t ) , ( 1st ` t ) >. ) -> z = <. ( 2nd ` t ) , ( 1st ` t ) >. ) |
| 146 |
|
df-rel |
|- ( Rel ( `' F \ ( { .0. } X. _V ) ) <-> ( `' F \ ( { .0. } X. _V ) ) C_ ( _V X. _V ) ) |
| 147 |
120 146
|
sylib |
|- ( ph -> ( `' F \ ( { .0. } X. _V ) ) C_ ( _V X. _V ) ) |
| 148 |
147
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ z = <. ( 2nd ` t ) , ( 1st ` t ) >. ) -> ( `' F \ ( { .0. } X. _V ) ) C_ ( _V X. _V ) ) |
| 149 |
148 144
|
sseldd |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ z = <. ( 2nd ` t ) , ( 1st ` t ) >. ) -> t e. ( _V X. _V ) ) |
| 150 |
|
2nd1st |
|- ( t e. ( _V X. _V ) -> U. `' { t } = <. ( 2nd ` t ) , ( 1st ` t ) >. ) |
| 151 |
149 150
|
syl |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ z = <. ( 2nd ` t ) , ( 1st ` t ) >. ) -> U. `' { t } = <. ( 2nd ` t ) , ( 1st ` t ) >. ) |
| 152 |
145 151
|
eqtr4d |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ z = <. ( 2nd ` t ) , ( 1st ` t ) >. ) -> z = U. `' { t } ) |
| 153 |
|
cnvf1olem |
|- ( ( Rel ( `' F \ ( { .0. } X. _V ) ) /\ ( t e. ( `' F \ ( { .0. } X. _V ) ) /\ z = U. `' { t } ) ) -> ( z e. `' ( `' F \ ( { .0. } X. _V ) ) /\ t = U. `' { z } ) ) |
| 154 |
153
|
simprd |
|- ( ( Rel ( `' F \ ( { .0. } X. _V ) ) /\ ( t e. ( `' F \ ( { .0. } X. _V ) ) /\ z = U. `' { t } ) ) -> t = U. `' { z } ) |
| 155 |
143 144 152 154
|
syl12anc |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ z = <. ( 2nd ` t ) , ( 1st ` t ) >. ) -> t = U. `' { z } ) |
| 156 |
28
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ t = U. `' { z } ) -> Rel ( F \ ( _V X. { .0. } ) ) ) |
| 157 |
97
|
ad2antrr |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ t = U. `' { z } ) -> z e. ( F \ ( _V X. { .0. } ) ) ) |
| 158 |
|
simpr |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ t = U. `' { z } ) -> t = U. `' { z } ) |
| 159 |
|
cnvf1olem |
|- ( ( Rel ( F \ ( _V X. { .0. } ) ) /\ ( z e. ( F \ ( _V X. { .0. } ) ) /\ t = U. `' { z } ) ) -> ( t e. `' ( F \ ( _V X. { .0. } ) ) /\ z = U. `' { t } ) ) |
| 160 |
159
|
simprd |
|- ( ( Rel ( F \ ( _V X. { .0. } ) ) /\ ( z e. ( F \ ( _V X. { .0. } ) ) /\ t = U. `' { z } ) ) -> z = U. `' { t } ) |
| 161 |
156 157 158 160
|
syl12anc |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ t = U. `' { z } ) -> z = U. `' { t } ) |
| 162 |
147
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ t = U. `' { z } ) -> ( `' F \ ( { .0. } X. _V ) ) C_ ( _V X. _V ) ) |
| 163 |
|
simplr |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ t = U. `' { z } ) -> t e. ( `' F \ ( { .0. } X. _V ) ) ) |
| 164 |
162 163
|
sseldd |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ t = U. `' { z } ) -> t e. ( _V X. _V ) ) |
| 165 |
164 150
|
syl |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ t = U. `' { z } ) -> U. `' { t } = <. ( 2nd ` t ) , ( 1st ` t ) >. ) |
| 166 |
161 165
|
eqtrd |
|- ( ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) /\ t = U. `' { z } ) -> z = <. ( 2nd ` t ) , ( 1st ` t ) >. ) |
| 167 |
155 166
|
impbida |
|- ( ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) /\ t e. ( `' F \ ( { .0. } X. _V ) ) ) -> ( z = <. ( 2nd ` t ) , ( 1st ` t ) >. <-> t = U. `' { z } ) ) |
| 168 |
167
|
ralrimiva |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> A. t e. ( `' F \ ( { .0. } X. _V ) ) ( z = <. ( 2nd ` t ) , ( 1st ` t ) >. <-> t = U. `' { z } ) ) |
| 169 |
138 142 168
|
rspcedvd |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> E. u e. ( `' F \ ( { .0. } X. _V ) ) A. t e. ( `' F \ ( { .0. } X. _V ) ) ( z = <. ( 2nd ` t ) , ( 1st ` t ) >. <-> t = u ) ) |
| 170 |
|
reu6 |
|- ( E! t e. ( `' F \ ( { .0. } X. _V ) ) z = <. ( 2nd ` t ) , ( 1st ` t ) >. <-> E. u e. ( `' F \ ( { .0. } X. _V ) ) A. t e. ( `' F \ ( { .0. } X. _V ) ) ( z = <. ( 2nd ` t ) , ( 1st ` t ) >. <-> t = u ) ) |
| 171 |
169 170
|
sylibr |
|- ( ( ph /\ z e. ( F \ ( _V X. { .0. } ) ) ) -> E! t e. ( `' F \ ( { .0. } X. _V ) ) z = <. ( 2nd ` t ) , ( 1st ` t ) >. ) |
| 172 |
104 1 2 107 4 110 115 117 132 171
|
gsummptf1o |
|- ( ph -> ( G gsum ( z e. ( F \ ( _V X. { .0. } ) ) |-> ( 2nd ` z ) ) ) = ( G gsum ( t e. ( `' F \ ( { .0. } X. _V ) ) |-> ( 1st ` t ) ) ) ) |
| 173 |
|
fveq2 |
|- ( t = z -> ( 1st ` t ) = ( 1st ` z ) ) |
| 174 |
173
|
cbvmptv |
|- ( t e. ( `' F \ ( { .0. } X. _V ) ) |-> ( 1st ` t ) ) = ( z e. ( `' F \ ( { .0. } X. _V ) ) |-> ( 1st ` z ) ) |
| 175 |
34
|
cnveqd |
|- ( ph -> `' ( F |` ( F supp .0. ) ) = `' ( F \ ( _V X. { .0. } ) ) ) |
| 176 |
175 126
|
eqtr2di |
|- ( ph -> ( `' F \ ( { .0. } X. _V ) ) = `' ( F |` ( F supp .0. ) ) ) |
| 177 |
176
|
mpteq1d |
|- ( ph -> ( z e. ( `' F \ ( { .0. } X. _V ) ) |-> ( 1st ` z ) ) = ( z e. `' ( F |` ( F supp .0. ) ) |-> ( 1st ` z ) ) ) |
| 178 |
174 177
|
eqtrid |
|- ( ph -> ( t e. ( `' F \ ( { .0. } X. _V ) ) |-> ( 1st ` t ) ) = ( z e. `' ( F |` ( F supp .0. ) ) |-> ( 1st ` z ) ) ) |
| 179 |
178
|
oveq2d |
|- ( ph -> ( G gsum ( t e. ( `' F \ ( { .0. } X. _V ) ) |-> ( 1st ` t ) ) ) = ( G gsum ( z e. `' ( F |` ( F supp .0. ) ) |-> ( 1st ` z ) ) ) ) |
| 180 |
103 172 179
|
3eqtrd |
|- ( ph -> ( G gsum F ) = ( G gsum ( z e. `' ( F |` ( F supp .0. ) ) |-> ( 1st ` z ) ) ) ) |
| 181 |
|
nfcv |
|- F/_ y ( 1st ` z ) |
| 182 |
|
nfv |
|- F/ x ph |
| 183 |
|
vex |
|- y e. _V |
| 184 |
75 183
|
op1std |
|- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 185 |
|
relcnv |
|- Rel `' ( F |` ( F supp .0. ) ) |
| 186 |
185
|
a1i |
|- ( ph -> Rel `' ( F |` ( F supp .0. ) ) ) |
| 187 |
|
cnvfi |
|- ( ( F |` ( F supp .0. ) ) e. Fin -> `' ( F |` ( F supp .0. ) ) e. Fin ) |
| 188 |
109 187
|
syl |
|- ( ph -> `' ( F |` ( F supp .0. ) ) e. Fin ) |
| 189 |
113
|
adantr |
|- ( ( ph /\ z e. `' ( F |` ( F supp .0. ) ) ) -> ran F C_ B ) |
| 190 |
185
|
a1i |
|- ( ( ph /\ z e. `' ( F |` ( F supp .0. ) ) ) -> Rel `' ( F |` ( F supp .0. ) ) ) |
| 191 |
|
simpr |
|- ( ( ph /\ z e. `' ( F |` ( F supp .0. ) ) ) -> z e. `' ( F |` ( F supp .0. ) ) ) |
| 192 |
|
1stdm |
|- ( ( Rel `' ( F |` ( F supp .0. ) ) /\ z e. `' ( F |` ( F supp .0. ) ) ) -> ( 1st ` z ) e. dom `' ( F |` ( F supp .0. ) ) ) |
| 193 |
190 191 192
|
syl2anc |
|- ( ( ph /\ z e. `' ( F |` ( F supp .0. ) ) ) -> ( 1st ` z ) e. dom `' ( F |` ( F supp .0. ) ) ) |
| 194 |
|
df-rn |
|- ran ( F |` ( F supp .0. ) ) = dom `' ( F |` ( F supp .0. ) ) |
| 195 |
193 194
|
eleqtrrdi |
|- ( ( ph /\ z e. `' ( F |` ( F supp .0. ) ) ) -> ( 1st ` z ) e. ran ( F |` ( F supp .0. ) ) ) |
| 196 |
112 195
|
sselid |
|- ( ( ph /\ z e. `' ( F |` ( F supp .0. ) ) ) -> ( 1st ` z ) e. ran F ) |
| 197 |
189 196
|
sseldd |
|- ( ( ph /\ z e. `' ( F |` ( F supp .0. ) ) ) -> ( 1st ` z ) e. B ) |
| 198 |
181 182 1 184 186 188 4 197
|
gsummpt2d |
|- ( ph -> ( G gsum ( z e. `' ( F |` ( F supp .0. ) ) |-> ( 1st ` z ) ) ) = ( G gsum ( x e. dom `' ( F |` ( F supp .0. ) ) |-> ( G gsum ( y e. ( `' ( F |` ( F supp .0. ) ) " { x } ) |-> x ) ) ) ) ) |
| 199 |
|
df-ima |
|- ( F " ( F supp .0. ) ) = ran ( F |` ( F supp .0. ) ) |
| 200 |
|
supppreima |
|- ( ( Fun F /\ F e. _V /\ .0. e. _V ) -> ( F supp .0. ) = ( `' F " ( ran F \ { .0. } ) ) ) |
| 201 |
25 13 32 200
|
syl3anc |
|- ( ph -> ( F supp .0. ) = ( `' F " ( ran F \ { .0. } ) ) ) |
| 202 |
201
|
imaeq2d |
|- ( ph -> ( F " ( F supp .0. ) ) = ( F " ( `' F " ( ran F \ { .0. } ) ) ) ) |
| 203 |
199 202
|
eqtr3id |
|- ( ph -> ran ( F |` ( F supp .0. ) ) = ( F " ( `' F " ( ran F \ { .0. } ) ) ) ) |
| 204 |
|
funimacnv |
|- ( Fun F -> ( F " ( `' F " ( ran F \ { .0. } ) ) ) = ( ( ran F \ { .0. } ) i^i ran F ) ) |
| 205 |
25 204
|
syl |
|- ( ph -> ( F " ( `' F " ( ran F \ { .0. } ) ) ) = ( ( ran F \ { .0. } ) i^i ran F ) ) |
| 206 |
|
difssd |
|- ( ph -> ( ran F \ { .0. } ) C_ ran F ) |
| 207 |
|
dfss2 |
|- ( ( ran F \ { .0. } ) C_ ran F <-> ( ( ran F \ { .0. } ) i^i ran F ) = ( ran F \ { .0. } ) ) |
| 208 |
206 207
|
sylib |
|- ( ph -> ( ( ran F \ { .0. } ) i^i ran F ) = ( ran F \ { .0. } ) ) |
| 209 |
203 205 208
|
3eqtrd |
|- ( ph -> ran ( F |` ( F supp .0. ) ) = ( ran F \ { .0. } ) ) |
| 210 |
194 209
|
eqtr3id |
|- ( ph -> dom `' ( F |` ( F supp .0. ) ) = ( ran F \ { .0. } ) ) |
| 211 |
4
|
cmnmndd |
|- ( ph -> G e. Mnd ) |
| 212 |
211
|
adantr |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> G e. Mnd ) |
| 213 |
109
|
adantr |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> ( F |` ( F supp .0. ) ) e. Fin ) |
| 214 |
|
imafi2 |
|- ( `' ( F |` ( F supp .0. ) ) e. Fin -> ( `' ( F |` ( F supp .0. ) ) " { x } ) e. Fin ) |
| 215 |
213 187 214
|
3syl |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> ( `' ( F |` ( F supp .0. ) ) " { x } ) e. Fin ) |
| 216 |
194 114
|
eqsstrrid |
|- ( ph -> dom `' ( F |` ( F supp .0. ) ) C_ B ) |
| 217 |
216
|
sselda |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> x e. B ) |
| 218 |
1 3
|
gsumconst |
|- ( ( G e. Mnd /\ ( `' ( F |` ( F supp .0. ) ) " { x } ) e. Fin /\ x e. B ) -> ( G gsum ( y e. ( `' ( F |` ( F supp .0. ) ) " { x } ) |-> x ) ) = ( ( # ` ( `' ( F |` ( F supp .0. ) ) " { x } ) ) .x. x ) ) |
| 219 |
212 215 217 218
|
syl3anc |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> ( G gsum ( y e. ( `' ( F |` ( F supp .0. ) ) " { x } ) |-> x ) ) = ( ( # ` ( `' ( F |` ( F supp .0. ) ) " { x } ) ) .x. x ) ) |
| 220 |
|
cnvresima |
|- ( `' ( F |` ( F supp .0. ) ) " { x } ) = ( ( `' F " { x } ) i^i ( F supp .0. ) ) |
| 221 |
210
|
eleq2d |
|- ( ph -> ( x e. dom `' ( F |` ( F supp .0. ) ) <-> x e. ( ran F \ { .0. } ) ) ) |
| 222 |
221
|
biimpa |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> x e. ( ran F \ { .0. } ) ) |
| 223 |
222
|
snssd |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> { x } C_ ( ran F \ { .0. } ) ) |
| 224 |
|
sspreima |
|- ( ( Fun F /\ { x } C_ ( ran F \ { .0. } ) ) -> ( `' F " { x } ) C_ ( `' F " ( ran F \ { .0. } ) ) ) |
| 225 |
25 223 224
|
syl2an2r |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> ( `' F " { x } ) C_ ( `' F " ( ran F \ { .0. } ) ) ) |
| 226 |
201
|
adantr |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> ( F supp .0. ) = ( `' F " ( ran F \ { .0. } ) ) ) |
| 227 |
225 226
|
sseqtrrd |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> ( `' F " { x } ) C_ ( F supp .0. ) ) |
| 228 |
|
dfss2 |
|- ( ( `' F " { x } ) C_ ( F supp .0. ) <-> ( ( `' F " { x } ) i^i ( F supp .0. ) ) = ( `' F " { x } ) ) |
| 229 |
227 228
|
sylib |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> ( ( `' F " { x } ) i^i ( F supp .0. ) ) = ( `' F " { x } ) ) |
| 230 |
220 229
|
eqtr2id |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> ( `' F " { x } ) = ( `' ( F |` ( F supp .0. ) ) " { x } ) ) |
| 231 |
230
|
fveq2d |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> ( # ` ( `' F " { x } ) ) = ( # ` ( `' ( F |` ( F supp .0. ) ) " { x } ) ) ) |
| 232 |
231
|
oveq1d |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> ( ( # ` ( `' F " { x } ) ) .x. x ) = ( ( # ` ( `' ( F |` ( F supp .0. ) ) " { x } ) ) .x. x ) ) |
| 233 |
219 232
|
eqtr4d |
|- ( ( ph /\ x e. dom `' ( F |` ( F supp .0. ) ) ) -> ( G gsum ( y e. ( `' ( F |` ( F supp .0. ) ) " { x } ) |-> x ) ) = ( ( # ` ( `' F " { x } ) ) .x. x ) ) |
| 234 |
210 233
|
mpteq12dva |
|- ( ph -> ( x e. dom `' ( F |` ( F supp .0. ) ) |-> ( G gsum ( y e. ( `' ( F |` ( F supp .0. ) ) " { x } ) |-> x ) ) ) = ( x e. ( ran F \ { .0. } ) |-> ( ( # ` ( `' F " { x } ) ) .x. x ) ) ) |
| 235 |
234
|
oveq2d |
|- ( ph -> ( G gsum ( x e. dom `' ( F |` ( F supp .0. ) ) |-> ( G gsum ( y e. ( `' ( F |` ( F supp .0. ) ) " { x } ) |-> x ) ) ) ) = ( G gsum ( x e. ( ran F \ { .0. } ) |-> ( ( # ` ( `' F " { x } ) ) .x. x ) ) ) ) |
| 236 |
180 198 235
|
3eqtrd |
|- ( ph -> ( G gsum F ) = ( G gsum ( x e. ( ran F \ { .0. } ) |-> ( ( # ` ( `' F " { x } ) ) .x. x ) ) ) ) |