| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprr |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C = U. `' { B } ) | 
						
							| 2 |  | 1st2nd |  |-  ( ( Rel A /\ B e. A ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) | 
						
							| 3 | 2 | adantrr |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) | 
						
							| 4 | 3 | sneqd |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> { B } = { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) | 
						
							| 5 | 4 | cnveqd |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> `' { B } = `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) | 
						
							| 6 | 5 | unieqd |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> U. `' { B } = U. `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) | 
						
							| 7 | 1 6 | eqtrd |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C = U. `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) | 
						
							| 8 |  | opswap |  |-  U. `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } = <. ( 2nd ` B ) , ( 1st ` B ) >. | 
						
							| 9 | 7 8 | eqtrdi |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C = <. ( 2nd ` B ) , ( 1st ` B ) >. ) | 
						
							| 10 |  | simprl |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> B e. A ) | 
						
							| 11 | 3 10 | eqeltrrd |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> <. ( 1st ` B ) , ( 2nd ` B ) >. e. A ) | 
						
							| 12 |  | fvex |  |-  ( 2nd ` B ) e. _V | 
						
							| 13 |  | fvex |  |-  ( 1st ` B ) e. _V | 
						
							| 14 | 12 13 | opelcnv |  |-  ( <. ( 2nd ` B ) , ( 1st ` B ) >. e. `' A <-> <. ( 1st ` B ) , ( 2nd ` B ) >. e. A ) | 
						
							| 15 | 11 14 | sylibr |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> <. ( 2nd ` B ) , ( 1st ` B ) >. e. `' A ) | 
						
							| 16 | 9 15 | eqeltrd |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C e. `' A ) | 
						
							| 17 |  | opswap |  |-  U. `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } = <. ( 1st ` B ) , ( 2nd ` B ) >. | 
						
							| 18 | 17 | eqcomi |  |-  <. ( 1st ` B ) , ( 2nd ` B ) >. = U. `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } | 
						
							| 19 | 9 | sneqd |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> { C } = { <. ( 2nd ` B ) , ( 1st ` B ) >. } ) | 
						
							| 20 | 19 | cnveqd |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> `' { C } = `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } ) | 
						
							| 21 | 20 | unieqd |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> U. `' { C } = U. `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } ) | 
						
							| 22 | 18 3 21 | 3eqtr4a |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> B = U. `' { C } ) | 
						
							| 23 | 16 22 | jca |  |-  ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> ( C e. `' A /\ B = U. `' { C } ) ) |