| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprr |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 = ∪ ◡ { 𝐵 } ) |
| 2 |
|
1st2nd |
⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 = 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ) |
| 3 |
2
|
adantrr |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐵 = 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ) |
| 4 |
3
|
sneqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → { 𝐵 } = { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
| 5 |
4
|
cnveqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ◡ { 𝐵 } = ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
| 6 |
5
|
unieqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ∪ ◡ { 𝐵 } = ∪ ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
| 7 |
1 6
|
eqtrd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 = ∪ ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
| 8 |
|
opswap |
⊢ ∪ ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } = 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 |
| 9 |
7 8
|
eqtrdi |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 = 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 ) |
| 10 |
|
simprl |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐵 ∈ 𝐴 ) |
| 11 |
3 10
|
eqeltrrd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ∈ 𝐴 ) |
| 12 |
|
fvex |
⊢ ( 2nd ‘ 𝐵 ) ∈ V |
| 13 |
|
fvex |
⊢ ( 1st ‘ 𝐵 ) ∈ V |
| 14 |
12 13
|
opelcnv |
⊢ ( 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 ∈ ◡ 𝐴 ↔ 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ∈ 𝐴 ) |
| 15 |
11 14
|
sylibr |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 ∈ ◡ 𝐴 ) |
| 16 |
9 15
|
eqeltrd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 ∈ ◡ 𝐴 ) |
| 17 |
|
opswap |
⊢ ∪ ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } = 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 |
| 18 |
17
|
eqcomi |
⊢ 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 = ∪ ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } |
| 19 |
9
|
sneqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → { 𝐶 } = { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } ) |
| 20 |
19
|
cnveqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ◡ { 𝐶 } = ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } ) |
| 21 |
20
|
unieqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ∪ ◡ { 𝐶 } = ∪ ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } ) |
| 22 |
18 3 21
|
3eqtr4a |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐵 = ∪ ◡ { 𝐶 } ) |
| 23 |
16 22
|
jca |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ( 𝐶 ∈ ◡ 𝐴 ∧ 𝐵 = ∪ ◡ { 𝐶 } ) ) |