Metamath Proof Explorer


Theorem xrge0tsmsd

Description: Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015) (Revised by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypotheses xrge0tsmsd.g
|- G = ( RR*s |`s ( 0 [,] +oo ) )
xrge0tsmsd.a
|- ( ph -> A e. V )
xrge0tsmsd.f
|- ( ph -> F : A --> ( 0 [,] +oo ) )
xrge0tsmsd.s
|- ( ph -> S = sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) )
Assertion xrge0tsmsd
|- ( ph -> ( G tsums F ) = { S } )

Proof

Step Hyp Ref Expression
1 xrge0tsmsd.g
 |-  G = ( RR*s |`s ( 0 [,] +oo ) )
2 xrge0tsmsd.a
 |-  ( ph -> A e. V )
3 xrge0tsmsd.f
 |-  ( ph -> F : A --> ( 0 [,] +oo ) )
4 xrge0tsmsd.s
 |-  ( ph -> S = sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) )
5 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
6 xrsbas
 |-  RR* = ( Base ` RR*s )
7 1 6 ressbas2
 |-  ( ( 0 [,] +oo ) C_ RR* -> ( 0 [,] +oo ) = ( Base ` G ) )
8 5 7 ax-mp
 |-  ( 0 [,] +oo ) = ( Base ` G )
9 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
10 xrge0cmn
 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd
11 1 10 eqeltri
 |-  G e. CMnd
12 11 a1i
 |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> G e. CMnd )
13 simpr
 |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> s e. ( ~P A i^i Fin ) )
14 elfpw
 |-  ( s e. ( ~P A i^i Fin ) <-> ( s C_ A /\ s e. Fin ) )
15 14 simplbi
 |-  ( s e. ( ~P A i^i Fin ) -> s C_ A )
16 fssres
 |-  ( ( F : A --> ( 0 [,] +oo ) /\ s C_ A ) -> ( F |` s ) : s --> ( 0 [,] +oo ) )
17 3 15 16 syl2an
 |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( F |` s ) : s --> ( 0 [,] +oo ) )
18 elinel2
 |-  ( s e. ( ~P A i^i Fin ) -> s e. Fin )
19 18 adantl
 |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> s e. Fin )
20 fvexd
 |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( 0g ` G ) e. _V )
21 17 19 20 fdmfifsupp
 |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( F |` s ) finSupp ( 0g ` G ) )
22 8 9 12 13 17 21 gsumcl
 |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` s ) ) e. ( 0 [,] +oo ) )
23 5 22 sselid
 |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` s ) ) e. RR* )
24 23 fmpttd
 |-  ( ph -> ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) : ( ~P A i^i Fin ) --> RR* )
25 24 frnd
 |-  ( ph -> ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) C_ RR* )
26 supxrcl
 |-  ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) C_ RR* -> sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) e. RR* )
27 25 26 syl
 |-  ( ph -> sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) e. RR* )
28 4 27 eqeltrd
 |-  ( ph -> S e. RR* )
29 0ss
 |-  (/) C_ A
30 0fin
 |-  (/) e. Fin
31 elfpw
 |-  ( (/) e. ( ~P A i^i Fin ) <-> ( (/) C_ A /\ (/) e. Fin ) )
32 29 30 31 mpbir2an
 |-  (/) e. ( ~P A i^i Fin )
33 0cn
 |-  0 e. CC
34 eqid
 |-  ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) = ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) )
35 reseq2
 |-  ( s = (/) -> ( F |` s ) = ( F |` (/) ) )
36 res0
 |-  ( F |` (/) ) = (/)
37 35 36 eqtrdi
 |-  ( s = (/) -> ( F |` s ) = (/) )
38 37 oveq2d
 |-  ( s = (/) -> ( G gsum ( F |` s ) ) = ( G gsum (/) ) )
39 eqid
 |-  ( RR*s |`s ( RR* \ { -oo } ) ) = ( RR*s |`s ( RR* \ { -oo } ) )
40 39 xrge0subm
 |-  ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) )
41 xrex
 |-  RR* e. _V
42 difexg
 |-  ( RR* e. _V -> ( RR* \ { -oo } ) e. _V )
43 41 42 ax-mp
 |-  ( RR* \ { -oo } ) e. _V
44 simpl
 |-  ( ( x e. RR* /\ 0 <_ x ) -> x e. RR* )
45 ge0nemnf
 |-  ( ( x e. RR* /\ 0 <_ x ) -> x =/= -oo )
46 44 45 jca
 |-  ( ( x e. RR* /\ 0 <_ x ) -> ( x e. RR* /\ x =/= -oo ) )
47 elxrge0
 |-  ( x e. ( 0 [,] +oo ) <-> ( x e. RR* /\ 0 <_ x ) )
48 eldifsn
 |-  ( x e. ( RR* \ { -oo } ) <-> ( x e. RR* /\ x =/= -oo ) )
49 46 47 48 3imtr4i
 |-  ( x e. ( 0 [,] +oo ) -> x e. ( RR* \ { -oo } ) )
50 49 ssriv
 |-  ( 0 [,] +oo ) C_ ( RR* \ { -oo } )
51 ressabs
 |-  ( ( ( RR* \ { -oo } ) e. _V /\ ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) -> ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) )
52 43 50 51 mp2an
 |-  ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) )
53 1 52 eqtr4i
 |-  G = ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) )
54 39 xrs10
 |-  0 = ( 0g ` ( RR*s |`s ( RR* \ { -oo } ) ) )
55 53 54 subm0
 |-  ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> 0 = ( 0g ` G ) )
56 40 55 ax-mp
 |-  0 = ( 0g ` G )
57 56 gsum0
 |-  ( G gsum (/) ) = 0
58 38 57 eqtrdi
 |-  ( s = (/) -> ( G gsum ( F |` s ) ) = 0 )
59 34 58 elrnmpt1s
 |-  ( ( (/) e. ( ~P A i^i Fin ) /\ 0 e. CC ) -> 0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) )
60 32 33 59 mp2an
 |-  0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) )
61 supxrub
 |-  ( ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) C_ RR* /\ 0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) ) -> 0 <_ sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) )
62 25 60 61 sylancl
 |-  ( ph -> 0 <_ sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) )
63 62 4 breqtrrd
 |-  ( ph -> 0 <_ S )
64 elxrge0
 |-  ( S e. ( 0 [,] +oo ) <-> ( S e. RR* /\ 0 <_ S ) )
65 28 63 64 sylanbrc
 |-  ( ph -> S e. ( 0 [,] +oo ) )
66 letop
 |-  ( ordTop ` <_ ) e. Top
67 ovex
 |-  ( 0 [,] +oo ) e. _V
68 elrest
 |-  ( ( ( ordTop ` <_ ) e. Top /\ ( 0 [,] +oo ) e. _V ) -> ( u e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) <-> E. v e. ( ordTop ` <_ ) u = ( v i^i ( 0 [,] +oo ) ) ) )
69 66 67 68 mp2an
 |-  ( u e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) <-> E. v e. ( ordTop ` <_ ) u = ( v i^i ( 0 [,] +oo ) ) )
70 elinel1
 |-  ( S e. ( v i^i ( 0 [,] +oo ) ) -> S e. v )
71 simplrl
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> v e. ( ordTop ` <_ ) )
72 reex
 |-  RR e. _V
73 elrestr
 |-  ( ( ( ordTop ` <_ ) e. Top /\ RR e. _V /\ v e. ( ordTop ` <_ ) ) -> ( v i^i RR ) e. ( ( ordTop ` <_ ) |`t RR ) )
74 66 72 73 mp3an12
 |-  ( v e. ( ordTop ` <_ ) -> ( v i^i RR ) e. ( ( ordTop ` <_ ) |`t RR ) )
75 71 74 syl
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> ( v i^i RR ) e. ( ( ordTop ` <_ ) |`t RR ) )
76 eqid
 |-  ( ( ordTop ` <_ ) |`t RR ) = ( ( ordTop ` <_ ) |`t RR )
77 76 xrtgioo
 |-  ( topGen ` ran (,) ) = ( ( ordTop ` <_ ) |`t RR )
78 75 77 eleqtrrdi
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> ( v i^i RR ) e. ( topGen ` ran (,) ) )
79 simplrr
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> S e. v )
80 simpr
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> S e. RR )
81 79 80 elind
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> S e. ( v i^i RR ) )
82 tg2
 |-  ( ( ( v i^i RR ) e. ( topGen ` ran (,) ) /\ S e. ( v i^i RR ) ) -> E. u e. ran (,) ( S e. u /\ u C_ ( v i^i RR ) ) )
83 78 81 82 syl2anc
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> E. u e. ran (,) ( S e. u /\ u C_ ( v i^i RR ) ) )
84 ioof
 |-  (,) : ( RR* X. RR* ) --> ~P RR
85 ffn
 |-  ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) )
86 ovelrn
 |-  ( (,) Fn ( RR* X. RR* ) -> ( u e. ran (,) <-> E. r e. RR* E. w e. RR* u = ( r (,) w ) ) )
87 84 85 86 mp2b
 |-  ( u e. ran (,) <-> E. r e. RR* E. w e. RR* u = ( r (,) w ) )
88 simprrr
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> ( r (,) w ) C_ ( v i^i RR ) )
89 88 adantr
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( r (,) w ) C_ ( v i^i RR ) )
90 inss1
 |-  ( v i^i RR ) C_ v
91 89 90 sstrdi
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( r (,) w ) C_ v )
92 11 a1i
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> G e. CMnd )
93 simprrl
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> y e. ( ~P A i^i Fin ) )
94 elinel2
 |-  ( y e. ( ~P A i^i Fin ) -> y e. Fin )
95 93 94 syl
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> y e. Fin )
96 simp-4l
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ph )
97 96 3 syl
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> F : A --> ( 0 [,] +oo ) )
98 elfpw
 |-  ( y e. ( ~P A i^i Fin ) <-> ( y C_ A /\ y e. Fin ) )
99 98 simplbi
 |-  ( y e. ( ~P A i^i Fin ) -> y C_ A )
100 93 99 syl
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> y C_ A )
101 97 100 fssresd
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( F |` y ) : y --> ( 0 [,] +oo ) )
102 3 ffund
 |-  ( ph -> Fun F )
103 102 ad2antrr
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> Fun F )
104 103 ad2antrr
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> Fun F )
105 c0ex
 |-  0 e. _V
106 105 a1i
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> 0 e. _V )
107 104 95 106 resfifsupp
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( F |` y ) finSupp 0 )
108 8 56 92 95 101 107 gsumcl
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` y ) ) e. ( 0 [,] +oo ) )
109 5 108 sselid
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` y ) ) e. RR* )
110 simprll
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> r e. RR* )
111 110 adantr
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> r e. RR* )
112 simprll
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> z e. ( ~P A i^i Fin ) )
113 simprrr
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> z C_ y )
114 113 100 sstrd
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> z C_ A )
115 97 114 fssresd
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( F |` z ) : z --> ( 0 [,] +oo ) )
116 ssfi
 |-  ( ( y e. Fin /\ z C_ y ) -> z e. Fin )
117 95 113 116 syl2anc
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> z e. Fin )
118 fvexd
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( 0g ` G ) e. _V )
119 115 117 118 fdmfifsupp
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( F |` z ) finSupp ( 0g ` G ) )
120 8 9 92 112 115 119 gsumcl
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` z ) ) e. ( 0 [,] +oo ) )
121 5 120 sselid
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` z ) ) e. RR* )
122 simprlr
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> r < ( G gsum ( F |` z ) ) )
123 96 2 syl
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> A e. V )
124 1 123 97 93 113 xrge0gsumle
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` z ) ) <_ ( G gsum ( F |` y ) ) )
125 111 121 109 122 124 xrltletrd
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> r < ( G gsum ( F |` y ) ) )
126 96 28 syl
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> S e. RR* )
127 simprlr
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> w e. RR* )
128 127 adantr
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> w e. RR* )
129 96 25 syl
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) C_ RR* )
130 ovex
 |-  ( G gsum ( F |` y ) ) e. _V
131 reseq2
 |-  ( s = y -> ( F |` s ) = ( F |` y ) )
132 131 oveq2d
 |-  ( s = y -> ( G gsum ( F |` s ) ) = ( G gsum ( F |` y ) ) )
133 34 132 elrnmpt1s
 |-  ( ( y e. ( ~P A i^i Fin ) /\ ( G gsum ( F |` y ) ) e. _V ) -> ( G gsum ( F |` y ) ) e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) )
134 93 130 133 sylancl
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` y ) ) e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) )
135 supxrub
 |-  ( ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) C_ RR* /\ ( G gsum ( F |` y ) ) e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) ) -> ( G gsum ( F |` y ) ) <_ sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) )
136 129 134 135 syl2anc
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` y ) ) <_ sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) )
137 96 4 syl
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> S = sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) )
138 136 137 breqtrrd
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` y ) ) <_ S )
139 simprrl
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> S e. ( r (,) w ) )
140 eliooord
 |-  ( S e. ( r (,) w ) -> ( r < S /\ S < w ) )
141 139 140 syl
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> ( r < S /\ S < w ) )
142 141 simprd
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> S < w )
143 142 adantr
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> S < w )
144 109 126 128 138 143 xrlelttrd
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` y ) ) < w )
145 elioo1
 |-  ( ( r e. RR* /\ w e. RR* ) -> ( ( G gsum ( F |` y ) ) e. ( r (,) w ) <-> ( ( G gsum ( F |` y ) ) e. RR* /\ r < ( G gsum ( F |` y ) ) /\ ( G gsum ( F |` y ) ) < w ) ) )
146 111 128 145 syl2anc
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( ( G gsum ( F |` y ) ) e. ( r (,) w ) <-> ( ( G gsum ( F |` y ) ) e. RR* /\ r < ( G gsum ( F |` y ) ) /\ ( G gsum ( F |` y ) ) < w ) ) )
147 109 125 144 146 mpbir3and
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` y ) ) e. ( r (,) w ) )
148 91 147 sseldd
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` y ) ) e. v )
149 148 108 elind
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) ) -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) )
150 149 anassrs
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) )
151 150 expr
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ y e. ( ~P A i^i Fin ) ) -> ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) )
152 151 ralrimiva
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) -> A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) )
153 141 simpld
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> r < S )
154 4 ad3antrrr
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> S = sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) )
155 153 154 breqtrd
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> r < sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) )
156 25 ad3antrrr
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) C_ RR* )
157 supxrlub
 |-  ( ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) C_ RR* /\ r e. RR* ) -> ( r < sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) <-> E. w e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) r < w ) )
158 156 110 157 syl2anc
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> ( r < sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) <-> E. w e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) r < w ) )
159 155 158 mpbid
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> E. w e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) r < w )
160 ovex
 |-  ( G gsum ( F |` z ) ) e. _V
161 160 rgenw
 |-  A. z e. ( ~P A i^i Fin ) ( G gsum ( F |` z ) ) e. _V
162 reseq2
 |-  ( s = z -> ( F |` s ) = ( F |` z ) )
163 162 oveq2d
 |-  ( s = z -> ( G gsum ( F |` s ) ) = ( G gsum ( F |` z ) ) )
164 163 cbvmptv
 |-  ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) = ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) )
165 breq2
 |-  ( w = ( G gsum ( F |` z ) ) -> ( r < w <-> r < ( G gsum ( F |` z ) ) ) )
166 164 165 rexrnmptw
 |-  ( A. z e. ( ~P A i^i Fin ) ( G gsum ( F |` z ) ) e. _V -> ( E. w e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) r < w <-> E. z e. ( ~P A i^i Fin ) r < ( G gsum ( F |` z ) ) ) )
167 161 166 ax-mp
 |-  ( E. w e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) r < w <-> E. z e. ( ~P A i^i Fin ) r < ( G gsum ( F |` z ) ) )
168 159 167 sylib
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> E. z e. ( ~P A i^i Fin ) r < ( G gsum ( F |` z ) ) )
169 152 168 reximddv
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( ( r e. RR* /\ w e. RR* ) /\ ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) )
170 169 expr
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( r e. RR* /\ w e. RR* ) ) -> ( ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) )
171 eleq2
 |-  ( u = ( r (,) w ) -> ( S e. u <-> S e. ( r (,) w ) ) )
172 sseq1
 |-  ( u = ( r (,) w ) -> ( u C_ ( v i^i RR ) <-> ( r (,) w ) C_ ( v i^i RR ) ) )
173 171 172 anbi12d
 |-  ( u = ( r (,) w ) -> ( ( S e. u /\ u C_ ( v i^i RR ) ) <-> ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) ) )
174 173 imbi1d
 |-  ( u = ( r (,) w ) -> ( ( ( S e. u /\ u C_ ( v i^i RR ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) <-> ( ( S e. ( r (,) w ) /\ ( r (,) w ) C_ ( v i^i RR ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) ) )
175 170 174 syl5ibrcom
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) /\ ( r e. RR* /\ w e. RR* ) ) -> ( u = ( r (,) w ) -> ( ( S e. u /\ u C_ ( v i^i RR ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) ) )
176 175 rexlimdvva
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> ( E. r e. RR* E. w e. RR* u = ( r (,) w ) -> ( ( S e. u /\ u C_ ( v i^i RR ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) ) )
177 87 176 syl5bi
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> ( u e. ran (,) -> ( ( S e. u /\ u C_ ( v i^i RR ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) ) )
178 177 rexlimdv
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> ( E. u e. ran (,) ( S e. u /\ u C_ ( v i^i RR ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) )
179 83 178 mpd
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S e. RR ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) )
180 simplrl
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) -> v e. ( ordTop ` <_ ) )
181 simpr
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) -> S = +oo )
182 simplrr
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) -> S e. v )
183 181 182 eqeltrrd
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) -> +oo e. v )
184 pnfnei
 |-  ( ( v e. ( ordTop ` <_ ) /\ +oo e. v ) -> E. r e. RR ( r (,] +oo ) C_ v )
185 180 183 184 syl2anc
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) -> E. r e. RR ( r (,] +oo ) C_ v )
186 simprr
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> ( r (,] +oo ) C_ v )
187 186 ad2antrr
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( r (,] +oo ) C_ v )
188 11 a1i
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> G e. CMnd )
189 simprl
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> y e. ( ~P A i^i Fin ) )
190 simp-5l
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ph )
191 190 3 syl
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> F : A --> ( 0 [,] +oo ) )
192 99 ad2antrl
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> y C_ A )
193 191 192 fssresd
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( F |` y ) : y --> ( 0 [,] +oo ) )
194 94 ad2antrl
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> y e. Fin )
195 fvexd
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( 0g ` G ) e. _V )
196 193 194 195 fdmfifsupp
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( F |` y ) finSupp ( 0g ` G ) )
197 8 9 188 189 193 196 gsumcl
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( G gsum ( F |` y ) ) e. ( 0 [,] +oo ) )
198 5 197 sselid
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( G gsum ( F |` y ) ) e. RR* )
199 rexr
 |-  ( r e. RR -> r e. RR* )
200 199 ad2antrl
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> r e. RR* )
201 200 ad2antrr
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> r e. RR* )
202 simplrl
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> z e. ( ~P A i^i Fin ) )
203 simprr
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> z C_ y )
204 203 192 sstrd
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> z C_ A )
205 191 204 fssresd
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( F |` z ) : z --> ( 0 [,] +oo ) )
206 194 203 116 syl2anc
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> z e. Fin )
207 205 206 195 fdmfifsupp
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( F |` z ) finSupp ( 0g ` G ) )
208 8 9 188 202 205 207 gsumcl
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( G gsum ( F |` z ) ) e. ( 0 [,] +oo ) )
209 5 208 sselid
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( G gsum ( F |` z ) ) e. RR* )
210 simplrr
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> r < ( G gsum ( F |` z ) ) )
211 190 2 syl
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> A e. V )
212 1 211 191 189 203 xrge0gsumle
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( G gsum ( F |` z ) ) <_ ( G gsum ( F |` y ) ) )
213 201 209 198 210 212 xrltletrd
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> r < ( G gsum ( F |` y ) ) )
214 pnfge
 |-  ( ( G gsum ( F |` y ) ) e. RR* -> ( G gsum ( F |` y ) ) <_ +oo )
215 198 214 syl
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( G gsum ( F |` y ) ) <_ +oo )
216 pnfxr
 |-  +oo e. RR*
217 elioc1
 |-  ( ( r e. RR* /\ +oo e. RR* ) -> ( ( G gsum ( F |` y ) ) e. ( r (,] +oo ) <-> ( ( G gsum ( F |` y ) ) e. RR* /\ r < ( G gsum ( F |` y ) ) /\ ( G gsum ( F |` y ) ) <_ +oo ) ) )
218 201 216 217 sylancl
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( ( G gsum ( F |` y ) ) e. ( r (,] +oo ) <-> ( ( G gsum ( F |` y ) ) e. RR* /\ r < ( G gsum ( F |` y ) ) /\ ( G gsum ( F |` y ) ) <_ +oo ) ) )
219 198 213 215 218 mpbir3and
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( G gsum ( F |` y ) ) e. ( r (,] +oo ) )
220 187 219 sseldd
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( G gsum ( F |` y ) ) e. v )
221 220 197 elind
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ ( y e. ( ~P A i^i Fin ) /\ z C_ y ) ) -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) )
222 221 expr
 |-  ( ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) /\ y e. ( ~P A i^i Fin ) ) -> ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) )
223 222 ralrimiva
 |-  ( ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) /\ ( z e. ( ~P A i^i Fin ) /\ r < ( G gsum ( F |` z ) ) ) ) -> A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) )
224 ltpnf
 |-  ( r e. RR -> r < +oo )
225 224 ad2antrl
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> r < +oo )
226 simplr
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> S = +oo )
227 225 226 breqtrrd
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> r < S )
228 4 ad3antrrr
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> S = sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) )
229 227 228 breqtrd
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> r < sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) )
230 25 ad3antrrr
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) C_ RR* )
231 230 200 157 syl2anc
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> ( r < sup ( ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) , RR* , < ) <-> E. w e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) r < w ) )
232 229 231 mpbid
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> E. w e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) r < w )
233 232 167 sylib
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> E. z e. ( ~P A i^i Fin ) r < ( G gsum ( F |` z ) ) )
234 223 233 reximddv
 |-  ( ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) /\ ( r e. RR /\ ( r (,] +oo ) C_ v ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) )
235 185 234 rexlimddv
 |-  ( ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) /\ S = +oo ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) )
236 ge0nemnf
 |-  ( ( S e. RR* /\ 0 <_ S ) -> S =/= -oo )
237 28 63 236 syl2anc
 |-  ( ph -> S =/= -oo )
238 28 237 jca
 |-  ( ph -> ( S e. RR* /\ S =/= -oo ) )
239 238 adantr
 |-  ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) -> ( S e. RR* /\ S =/= -oo ) )
240 xrnemnf
 |-  ( ( S e. RR* /\ S =/= -oo ) <-> ( S e. RR \/ S = +oo ) )
241 239 240 sylib
 |-  ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) -> ( S e. RR \/ S = +oo ) )
242 179 235 241 mpjaodan
 |-  ( ( ph /\ ( v e. ( ordTop ` <_ ) /\ S e. v ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) )
243 242 expr
 |-  ( ( ph /\ v e. ( ordTop ` <_ ) ) -> ( S e. v -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) )
244 70 243 syl5
 |-  ( ( ph /\ v e. ( ordTop ` <_ ) ) -> ( S e. ( v i^i ( 0 [,] +oo ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) )
245 eleq2
 |-  ( u = ( v i^i ( 0 [,] +oo ) ) -> ( S e. u <-> S e. ( v i^i ( 0 [,] +oo ) ) ) )
246 eleq2
 |-  ( u = ( v i^i ( 0 [,] +oo ) ) -> ( ( G gsum ( F |` y ) ) e. u <-> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) )
247 246 imbi2d
 |-  ( u = ( v i^i ( 0 [,] +oo ) ) -> ( ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) <-> ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) )
248 247 rexralbidv
 |-  ( u = ( v i^i ( 0 [,] +oo ) ) -> ( E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) <-> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) )
249 245 248 imbi12d
 |-  ( u = ( v i^i ( 0 [,] +oo ) ) -> ( ( S e. u -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) ) <-> ( S e. ( v i^i ( 0 [,] +oo ) ) -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. ( v i^i ( 0 [,] +oo ) ) ) ) ) )
250 244 249 syl5ibrcom
 |-  ( ( ph /\ v e. ( ordTop ` <_ ) ) -> ( u = ( v i^i ( 0 [,] +oo ) ) -> ( S e. u -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) ) ) )
251 250 rexlimdva
 |-  ( ph -> ( E. v e. ( ordTop ` <_ ) u = ( v i^i ( 0 [,] +oo ) ) -> ( S e. u -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) ) ) )
252 69 251 syl5bi
 |-  ( ph -> ( u e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) -> ( S e. u -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) ) ) )
253 252 ralrimiv
 |-  ( ph -> A. u e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ( S e. u -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) ) )
254 xrstset
 |-  ( ordTop ` <_ ) = ( TopSet ` RR*s )
255 1 254 resstset
 |-  ( ( 0 [,] +oo ) e. _V -> ( ordTop ` <_ ) = ( TopSet ` G ) )
256 67 255 ax-mp
 |-  ( ordTop ` <_ ) = ( TopSet ` G )
257 8 256 topnval
 |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( TopOpen ` G )
258 eqid
 |-  ( ~P A i^i Fin ) = ( ~P A i^i Fin )
259 11 a1i
 |-  ( ph -> G e. CMnd )
260 xrstps
 |-  RR*s e. TopSp
261 resstps
 |-  ( ( RR*s e. TopSp /\ ( 0 [,] +oo ) e. _V ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp )
262 260 67 261 mp2an
 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp
263 1 262 eqeltri
 |-  G e. TopSp
264 263 a1i
 |-  ( ph -> G e. TopSp )
265 8 257 258 259 264 2 3 eltsms
 |-  ( ph -> ( S e. ( G tsums F ) <-> ( S e. ( 0 [,] +oo ) /\ A. u e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ( S e. u -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) ) ) ) )
266 65 253 265 mpbir2and
 |-  ( ph -> S e. ( G tsums F ) )
267 letsr
 |-  <_ e. TosetRel
268 ordthaus
 |-  ( <_ e. TosetRel -> ( ordTop ` <_ ) e. Haus )
269 267 268 mp1i
 |-  ( ph -> ( ordTop ` <_ ) e. Haus )
270 resthaus
 |-  ( ( ( ordTop ` <_ ) e. Haus /\ ( 0 [,] +oo ) e. _V ) -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Haus )
271 269 67 270 sylancl
 |-  ( ph -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Haus )
272 8 259 264 2 3 257 271 haustsms2
 |-  ( ph -> ( S e. ( G tsums F ) -> ( G tsums F ) = { S } ) )
273 266 272 mpd
 |-  ( ph -> ( G tsums F ) = { S } )