Metamath Proof Explorer


Theorem resfifsupp

Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019)

Ref Expression
Hypotheses resfifsupp.f
|- ( ph -> Fun F )
resfifsupp.x
|- ( ph -> X e. Fin )
resfifsupp.z
|- ( ph -> Z e. V )
Assertion resfifsupp
|- ( ph -> ( F |` X ) finSupp Z )

Proof

Step Hyp Ref Expression
1 resfifsupp.f
 |-  ( ph -> Fun F )
2 resfifsupp.x
 |-  ( ph -> X e. Fin )
3 resfifsupp.z
 |-  ( ph -> Z e. V )
4 funrel
 |-  ( Fun F -> Rel F )
5 1 4 syl
 |-  ( ph -> Rel F )
6 resindm
 |-  ( Rel F -> ( F |` ( X i^i dom F ) ) = ( F |` X ) )
7 5 6 syl
 |-  ( ph -> ( F |` ( X i^i dom F ) ) = ( F |` X ) )
8 1 funfnd
 |-  ( ph -> F Fn dom F )
9 fnresin2
 |-  ( F Fn dom F -> ( F |` ( X i^i dom F ) ) Fn ( X i^i dom F ) )
10 8 9 syl
 |-  ( ph -> ( F |` ( X i^i dom F ) ) Fn ( X i^i dom F ) )
11 infi
 |-  ( X e. Fin -> ( X i^i dom F ) e. Fin )
12 2 11 syl
 |-  ( ph -> ( X i^i dom F ) e. Fin )
13 10 12 3 fndmfifsupp
 |-  ( ph -> ( F |` ( X i^i dom F ) ) finSupp Z )
14 7 13 eqbrtrrd
 |-  ( ph -> ( F |` X ) finSupp Z )