Step |
Hyp |
Ref |
Expression |
1 |
|
resfifsupp.f |
⊢ ( 𝜑 → Fun 𝐹 ) |
2 |
|
resfifsupp.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
resfifsupp.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
4 |
|
funrel |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → Rel 𝐹 ) |
6 |
|
resindm |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( 𝑋 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝑋 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝑋 ) ) |
8 |
1
|
funfnd |
⊢ ( 𝜑 → 𝐹 Fn dom 𝐹 ) |
9 |
|
fnresin2 |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝐹 ↾ ( 𝑋 ∩ dom 𝐹 ) ) Fn ( 𝑋 ∩ dom 𝐹 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 ∩ dom 𝐹 ) ) Fn ( 𝑋 ∩ dom 𝐹 ) ) |
11 |
|
infi |
⊢ ( 𝑋 ∈ Fin → ( 𝑋 ∩ dom 𝐹 ) ∈ Fin ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∩ dom 𝐹 ) ∈ Fin ) |
13 |
10 12 3
|
fndmfifsupp |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 ∩ dom 𝐹 ) ) finSupp 𝑍 ) |
14 |
7 13
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑋 ) finSupp 𝑍 ) |