Metamath Proof Explorer
Description: A function with a finite domain is always finitely supported.
(Contributed by AV, 25-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
fndmfisuppfi.f |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
|
|
fndmfisuppfi.d |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
|
|
fndmfisuppfi.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
|
Assertion |
fndmfifsupp |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fndmfisuppfi.f |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
| 2 |
|
fndmfisuppfi.d |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
| 3 |
|
fndmfisuppfi.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 4 |
|
dffn3 |
⊢ ( 𝐹 Fn 𝐷 ↔ 𝐹 : 𝐷 ⟶ ran 𝐹 ) |
| 5 |
1 4
|
sylib |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ran 𝐹 ) |
| 6 |
5 2 3
|
fdmfifsupp |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |