| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0gsumle.g |
|- G = ( RR*s |`s ( 0 [,] +oo ) ) |
| 2 |
|
xrge0gsumle.a |
|- ( ph -> A e. V ) |
| 3 |
|
xrge0gsumle.f |
|- ( ph -> F : A --> ( 0 [,] +oo ) ) |
| 4 |
|
xrge0gsumle.b |
|- ( ph -> B e. ( ~P A i^i Fin ) ) |
| 5 |
|
xrge0gsumle.c |
|- ( ph -> C C_ B ) |
| 6 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 7 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
| 8 |
1 7
|
ressbas2 |
|- ( ( 0 [,] +oo ) C_ RR* -> ( 0 [,] +oo ) = ( Base ` G ) ) |
| 9 |
6 8
|
ax-mp |
|- ( 0 [,] +oo ) = ( Base ` G ) |
| 10 |
|
eqid |
|- ( RR*s |`s ( RR* \ { -oo } ) ) = ( RR*s |`s ( RR* \ { -oo } ) ) |
| 11 |
10
|
xrge0subm |
|- ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
| 12 |
|
xrex |
|- RR* e. _V |
| 13 |
12
|
difexi |
|- ( RR* \ { -oo } ) e. _V |
| 14 |
|
simpl |
|- ( ( x e. RR* /\ 0 <_ x ) -> x e. RR* ) |
| 15 |
|
ge0nemnf |
|- ( ( x e. RR* /\ 0 <_ x ) -> x =/= -oo ) |
| 16 |
14 15
|
jca |
|- ( ( x e. RR* /\ 0 <_ x ) -> ( x e. RR* /\ x =/= -oo ) ) |
| 17 |
|
elxrge0 |
|- ( x e. ( 0 [,] +oo ) <-> ( x e. RR* /\ 0 <_ x ) ) |
| 18 |
|
eldifsn |
|- ( x e. ( RR* \ { -oo } ) <-> ( x e. RR* /\ x =/= -oo ) ) |
| 19 |
16 17 18
|
3imtr4i |
|- ( x e. ( 0 [,] +oo ) -> x e. ( RR* \ { -oo } ) ) |
| 20 |
19
|
ssriv |
|- ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) |
| 21 |
|
ressabs |
|- ( ( ( RR* \ { -oo } ) e. _V /\ ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) -> ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 22 |
13 20 21
|
mp2an |
|- ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
| 23 |
1 22
|
eqtr4i |
|- G = ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) |
| 24 |
10
|
xrs10 |
|- 0 = ( 0g ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
| 25 |
23 24
|
subm0 |
|- ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> 0 = ( 0g ` G ) ) |
| 26 |
11 25
|
ax-mp |
|- 0 = ( 0g ` G ) |
| 27 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
| 28 |
1 27
|
eqeltri |
|- G e. CMnd |
| 29 |
28
|
a1i |
|- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> G e. CMnd ) |
| 30 |
|
elfpw |
|- ( s e. ( ~P A i^i Fin ) <-> ( s C_ A /\ s e. Fin ) ) |
| 31 |
30
|
simprbi |
|- ( s e. ( ~P A i^i Fin ) -> s e. Fin ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> s e. Fin ) |
| 33 |
30
|
simplbi |
|- ( s e. ( ~P A i^i Fin ) -> s C_ A ) |
| 34 |
|
fssres |
|- ( ( F : A --> ( 0 [,] +oo ) /\ s C_ A ) -> ( F |` s ) : s --> ( 0 [,] +oo ) ) |
| 35 |
3 33 34
|
syl2an |
|- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( F |` s ) : s --> ( 0 [,] +oo ) ) |
| 36 |
|
c0ex |
|- 0 e. _V |
| 37 |
36
|
a1i |
|- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> 0 e. _V ) |
| 38 |
35 32 37
|
fdmfifsupp |
|- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( F |` s ) finSupp 0 ) |
| 39 |
9 26 29 32 35 38
|
gsumcl |
|- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` s ) ) e. ( 0 [,] +oo ) ) |
| 40 |
6 39
|
sselid |
|- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` s ) ) e. RR* ) |
| 41 |
40
|
fmpttd |
|- ( ph -> ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) : ( ~P A i^i Fin ) --> RR* ) |
| 42 |
41
|
frnd |
|- ( ph -> ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) C_ RR* ) |
| 43 |
|
0ss |
|- (/) C_ A |
| 44 |
|
0fi |
|- (/) e. Fin |
| 45 |
|
elfpw |
|- ( (/) e. ( ~P A i^i Fin ) <-> ( (/) C_ A /\ (/) e. Fin ) ) |
| 46 |
43 44 45
|
mpbir2an |
|- (/) e. ( ~P A i^i Fin ) |
| 47 |
|
0cn |
|- 0 e. CC |
| 48 |
|
eqid |
|- ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) = ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) |
| 49 |
|
reseq2 |
|- ( s = (/) -> ( F |` s ) = ( F |` (/) ) ) |
| 50 |
|
res0 |
|- ( F |` (/) ) = (/) |
| 51 |
49 50
|
eqtrdi |
|- ( s = (/) -> ( F |` s ) = (/) ) |
| 52 |
51
|
oveq2d |
|- ( s = (/) -> ( G gsum ( F |` s ) ) = ( G gsum (/) ) ) |
| 53 |
26
|
gsum0 |
|- ( G gsum (/) ) = 0 |
| 54 |
52 53
|
eqtrdi |
|- ( s = (/) -> ( G gsum ( F |` s ) ) = 0 ) |
| 55 |
48 54
|
elrnmpt1s |
|- ( ( (/) e. ( ~P A i^i Fin ) /\ 0 e. CC ) -> 0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) ) |
| 56 |
46 47 55
|
mp2an |
|- 0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) |
| 57 |
56
|
a1i |
|- ( ph -> 0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) ) |
| 58 |
42 57
|
sseldd |
|- ( ph -> 0 e. RR* ) |
| 59 |
28
|
a1i |
|- ( ph -> G e. CMnd ) |
| 60 |
4
|
elin2d |
|- ( ph -> B e. Fin ) |
| 61 |
|
diffi |
|- ( B e. Fin -> ( B \ C ) e. Fin ) |
| 62 |
60 61
|
syl |
|- ( ph -> ( B \ C ) e. Fin ) |
| 63 |
|
elfpw |
|- ( B e. ( ~P A i^i Fin ) <-> ( B C_ A /\ B e. Fin ) ) |
| 64 |
63
|
simplbi |
|- ( B e. ( ~P A i^i Fin ) -> B C_ A ) |
| 65 |
4 64
|
syl |
|- ( ph -> B C_ A ) |
| 66 |
65
|
ssdifssd |
|- ( ph -> ( B \ C ) C_ A ) |
| 67 |
3 66
|
fssresd |
|- ( ph -> ( F |` ( B \ C ) ) : ( B \ C ) --> ( 0 [,] +oo ) ) |
| 68 |
36
|
a1i |
|- ( ph -> 0 e. _V ) |
| 69 |
67 62 68
|
fdmfifsupp |
|- ( ph -> ( F |` ( B \ C ) ) finSupp 0 ) |
| 70 |
9 26 59 62 67 69
|
gsumcl |
|- ( ph -> ( G gsum ( F |` ( B \ C ) ) ) e. ( 0 [,] +oo ) ) |
| 71 |
6 70
|
sselid |
|- ( ph -> ( G gsum ( F |` ( B \ C ) ) ) e. RR* ) |
| 72 |
60 5
|
ssfid |
|- ( ph -> C e. Fin ) |
| 73 |
5 65
|
sstrd |
|- ( ph -> C C_ A ) |
| 74 |
3 73
|
fssresd |
|- ( ph -> ( F |` C ) : C --> ( 0 [,] +oo ) ) |
| 75 |
74 72 68
|
fdmfifsupp |
|- ( ph -> ( F |` C ) finSupp 0 ) |
| 76 |
9 26 59 72 74 75
|
gsumcl |
|- ( ph -> ( G gsum ( F |` C ) ) e. ( 0 [,] +oo ) ) |
| 77 |
6 76
|
sselid |
|- ( ph -> ( G gsum ( F |` C ) ) e. RR* ) |
| 78 |
|
elxrge0 |
|- ( ( G gsum ( F |` ( B \ C ) ) ) e. ( 0 [,] +oo ) <-> ( ( G gsum ( F |` ( B \ C ) ) ) e. RR* /\ 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) ) |
| 79 |
78
|
simprbi |
|- ( ( G gsum ( F |` ( B \ C ) ) ) e. ( 0 [,] +oo ) -> 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) |
| 80 |
70 79
|
syl |
|- ( ph -> 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) |
| 81 |
|
xleadd2a |
|- ( ( ( 0 e. RR* /\ ( G gsum ( F |` ( B \ C ) ) ) e. RR* /\ ( G gsum ( F |` C ) ) e. RR* ) /\ 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) -> ( ( G gsum ( F |` C ) ) +e 0 ) <_ ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) ) |
| 82 |
58 71 77 80 81
|
syl31anc |
|- ( ph -> ( ( G gsum ( F |` C ) ) +e 0 ) <_ ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) ) |
| 83 |
77
|
xaddridd |
|- ( ph -> ( ( G gsum ( F |` C ) ) +e 0 ) = ( G gsum ( F |` C ) ) ) |
| 84 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
| 85 |
|
xrsadd |
|- +e = ( +g ` RR*s ) |
| 86 |
1 85
|
ressplusg |
|- ( ( 0 [,] +oo ) e. _V -> +e = ( +g ` G ) ) |
| 87 |
84 86
|
ax-mp |
|- +e = ( +g ` G ) |
| 88 |
3 65
|
fssresd |
|- ( ph -> ( F |` B ) : B --> ( 0 [,] +oo ) ) |
| 89 |
88 60 68
|
fdmfifsupp |
|- ( ph -> ( F |` B ) finSupp 0 ) |
| 90 |
|
disjdif |
|- ( C i^i ( B \ C ) ) = (/) |
| 91 |
90
|
a1i |
|- ( ph -> ( C i^i ( B \ C ) ) = (/) ) |
| 92 |
|
undif2 |
|- ( C u. ( B \ C ) ) = ( C u. B ) |
| 93 |
|
ssequn1 |
|- ( C C_ B <-> ( C u. B ) = B ) |
| 94 |
5 93
|
sylib |
|- ( ph -> ( C u. B ) = B ) |
| 95 |
92 94
|
eqtr2id |
|- ( ph -> B = ( C u. ( B \ C ) ) ) |
| 96 |
9 26 87 59 4 88 89 91 95
|
gsumsplit |
|- ( ph -> ( G gsum ( F |` B ) ) = ( ( G gsum ( ( F |` B ) |` C ) ) +e ( G gsum ( ( F |` B ) |` ( B \ C ) ) ) ) ) |
| 97 |
5
|
resabs1d |
|- ( ph -> ( ( F |` B ) |` C ) = ( F |` C ) ) |
| 98 |
97
|
oveq2d |
|- ( ph -> ( G gsum ( ( F |` B ) |` C ) ) = ( G gsum ( F |` C ) ) ) |
| 99 |
|
difss |
|- ( B \ C ) C_ B |
| 100 |
|
resabs1 |
|- ( ( B \ C ) C_ B -> ( ( F |` B ) |` ( B \ C ) ) = ( F |` ( B \ C ) ) ) |
| 101 |
99 100
|
mp1i |
|- ( ph -> ( ( F |` B ) |` ( B \ C ) ) = ( F |` ( B \ C ) ) ) |
| 102 |
101
|
oveq2d |
|- ( ph -> ( G gsum ( ( F |` B ) |` ( B \ C ) ) ) = ( G gsum ( F |` ( B \ C ) ) ) ) |
| 103 |
98 102
|
oveq12d |
|- ( ph -> ( ( G gsum ( ( F |` B ) |` C ) ) +e ( G gsum ( ( F |` B ) |` ( B \ C ) ) ) ) = ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) ) |
| 104 |
96 103
|
eqtr2d |
|- ( ph -> ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) = ( G gsum ( F |` B ) ) ) |
| 105 |
82 83 104
|
3brtr3d |
|- ( ph -> ( G gsum ( F |` C ) ) <_ ( G gsum ( F |` B ) ) ) |