| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0gsumle.g |
⊢ 𝐺 = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 2 |
|
xrge0gsumle.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
xrge0gsumle.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 4 |
|
xrge0gsumle.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 5 |
|
xrge0gsumle.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) |
| 6 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 7 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
| 8 |
1 7
|
ressbas2 |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( 0 [,] +∞ ) = ( Base ‘ 𝐺 ) ) |
| 9 |
6 8
|
ax-mp |
⊢ ( 0 [,] +∞ ) = ( Base ‘ 𝐺 ) |
| 10 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) |
| 11 |
10
|
xrge0subm |
⊢ ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
| 12 |
|
xrex |
⊢ ℝ* ∈ V |
| 13 |
12
|
difexi |
⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
| 14 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ℝ* ) |
| 15 |
|
ge0nemnf |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ≠ -∞ ) |
| 16 |
14 15
|
jca |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → ( 𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞ ) ) |
| 17 |
|
elxrge0 |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) ↔ ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) ) |
| 18 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞ ) ) |
| 19 |
16 17 18
|
3imtr4i |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 20 |
19
|
ssriv |
⊢ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) |
| 21 |
|
ressabs |
⊢ ( ( ( ℝ* ∖ { -∞ } ) ∈ V ∧ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ) → ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 22 |
13 20 21
|
mp2an |
⊢ ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 23 |
1 22
|
eqtr4i |
⊢ 𝐺 = ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) |
| 24 |
10
|
xrs10 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
| 25 |
23 24
|
subm0 |
⊢ ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) → 0 = ( 0g ‘ 𝐺 ) ) |
| 26 |
11 25
|
ax-mp |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 27 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 28 |
1 27
|
eqeltri |
⊢ 𝐺 ∈ CMnd |
| 29 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
| 30 |
|
elfpw |
⊢ ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑠 ⊆ 𝐴 ∧ 𝑠 ∈ Fin ) ) |
| 31 |
30
|
simprbi |
⊢ ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑠 ∈ Fin ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑠 ∈ Fin ) |
| 33 |
30
|
simplbi |
⊢ ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑠 ⊆ 𝐴 ) |
| 34 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ∧ 𝑠 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝑠 ) : 𝑠 ⟶ ( 0 [,] +∞ ) ) |
| 35 |
3 33 34
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑠 ) : 𝑠 ⟶ ( 0 [,] +∞ ) ) |
| 36 |
|
c0ex |
⊢ 0 ∈ V |
| 37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 0 ∈ V ) |
| 38 |
35 32 37
|
fdmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑠 ) finSupp 0 ) |
| 39 |
9 26 29 32 35 38
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ∈ ( 0 [,] +∞ ) ) |
| 40 |
6 39
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ∈ ℝ* ) |
| 41 |
40
|
fmpttd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) : ( 𝒫 𝐴 ∩ Fin ) ⟶ ℝ* ) |
| 42 |
41
|
frnd |
⊢ ( 𝜑 → ran ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) ⊆ ℝ* ) |
| 43 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
| 44 |
|
0fi |
⊢ ∅ ∈ Fin |
| 45 |
|
elfpw |
⊢ ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ∅ ⊆ 𝐴 ∧ ∅ ∈ Fin ) ) |
| 46 |
43 44 45
|
mpbir2an |
⊢ ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) |
| 47 |
|
0cn |
⊢ 0 ∈ ℂ |
| 48 |
|
eqid |
⊢ ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) = ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) |
| 49 |
|
reseq2 |
⊢ ( 𝑠 = ∅ → ( 𝐹 ↾ 𝑠 ) = ( 𝐹 ↾ ∅ ) ) |
| 50 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
| 51 |
49 50
|
eqtrdi |
⊢ ( 𝑠 = ∅ → ( 𝐹 ↾ 𝑠 ) = ∅ ) |
| 52 |
51
|
oveq2d |
⊢ ( 𝑠 = ∅ → ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) = ( 𝐺 Σg ∅ ) ) |
| 53 |
26
|
gsum0 |
⊢ ( 𝐺 Σg ∅ ) = 0 |
| 54 |
52 53
|
eqtrdi |
⊢ ( 𝑠 = ∅ → ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) = 0 ) |
| 55 |
48 54
|
elrnmpt1s |
⊢ ( ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 0 ∈ ℂ ) → 0 ∈ ran ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) ) |
| 56 |
46 47 55
|
mp2an |
⊢ 0 ∈ ran ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) |
| 57 |
56
|
a1i |
⊢ ( 𝜑 → 0 ∈ ran ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) ) |
| 58 |
42 57
|
sseldd |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 59 |
28
|
a1i |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 60 |
4
|
elin2d |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 61 |
|
diffi |
⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∖ 𝐶 ) ∈ Fin ) |
| 62 |
60 61
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐶 ) ∈ Fin ) |
| 63 |
|
elfpw |
⊢ ( 𝐵 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin ) ) |
| 64 |
63
|
simplbi |
⊢ ( 𝐵 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝐵 ⊆ 𝐴 ) |
| 65 |
4 64
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 66 |
65
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐶 ) ⊆ 𝐴 ) |
| 67 |
3 66
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) : ( 𝐵 ∖ 𝐶 ) ⟶ ( 0 [,] +∞ ) ) |
| 68 |
36
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 69 |
67 62 68
|
fdmfifsupp |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) finSupp 0 ) |
| 70 |
9 26 59 62 67 69
|
gsumcl |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 71 |
6 70
|
sselid |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ℝ* ) |
| 72 |
60 5
|
ssfid |
⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
| 73 |
5 65
|
sstrd |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 74 |
3 73
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ( 0 [,] +∞ ) ) |
| 75 |
74 72 68
|
fdmfifsupp |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) finSupp 0 ) |
| 76 |
9 26 59 72 74 75
|
gsumcl |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ∈ ( 0 [,] +∞ ) ) |
| 77 |
6 76
|
sselid |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ∈ ℝ* ) |
| 78 |
|
elxrge0 |
⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ℝ* ∧ 0 ≤ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) ) |
| 79 |
78
|
simprbi |
⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) |
| 80 |
70 79
|
syl |
⊢ ( 𝜑 → 0 ≤ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) |
| 81 |
|
xleadd2a |
⊢ ( ( ( 0 ∈ ℝ* ∧ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ℝ* ∧ ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ∈ ℝ* ) ∧ 0 ≤ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 0 ) ≤ ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) ) |
| 82 |
58 71 77 80 81
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 0 ) ≤ ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) ) |
| 83 |
77
|
xaddridd |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 0 ) = ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ) |
| 84 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
| 85 |
|
xrsadd |
⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) |
| 86 |
1 85
|
ressplusg |
⊢ ( ( 0 [,] +∞ ) ∈ V → +𝑒 = ( +g ‘ 𝐺 ) ) |
| 87 |
84 86
|
ax-mp |
⊢ +𝑒 = ( +g ‘ 𝐺 ) |
| 88 |
3 65
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 89 |
88 60 68
|
fdmfifsupp |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) finSupp 0 ) |
| 90 |
|
disjdif |
⊢ ( 𝐶 ∩ ( 𝐵 ∖ 𝐶 ) ) = ∅ |
| 91 |
90
|
a1i |
⊢ ( 𝜑 → ( 𝐶 ∩ ( 𝐵 ∖ 𝐶 ) ) = ∅ ) |
| 92 |
|
undif2 |
⊢ ( 𝐶 ∪ ( 𝐵 ∖ 𝐶 ) ) = ( 𝐶 ∪ 𝐵 ) |
| 93 |
|
ssequn1 |
⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐶 ∪ 𝐵 ) = 𝐵 ) |
| 94 |
5 93
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∪ 𝐵 ) = 𝐵 ) |
| 95 |
92 94
|
eqtr2id |
⊢ ( 𝜑 → 𝐵 = ( 𝐶 ∪ ( 𝐵 ∖ 𝐶 ) ) ) |
| 96 |
9 26 87 59 4 88 89 91 95
|
gsumsplit |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐵 ) ) = ( ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) ) |
| 97 |
5
|
resabs1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) ↾ 𝐶 ) = ( 𝐹 ↾ 𝐶 ) ) |
| 98 |
97
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ) |
| 99 |
|
difss |
⊢ ( 𝐵 ∖ 𝐶 ) ⊆ 𝐵 |
| 100 |
|
resabs1 |
⊢ ( ( 𝐵 ∖ 𝐶 ) ⊆ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ↾ ( 𝐵 ∖ 𝐶 ) ) = ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) |
| 101 |
99 100
|
mp1i |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) ↾ ( 𝐵 ∖ 𝐶 ) ) = ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) |
| 102 |
101
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ ( 𝐵 ∖ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) |
| 103 |
98 102
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) ) |
| 104 |
96 103
|
eqtr2d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ 𝐵 ) ) ) |
| 105 |
82 83 104
|
3brtr3d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ≤ ( 𝐺 Σg ( 𝐹 ↾ 𝐵 ) ) ) |