Metamath Proof Explorer


Theorem haustsms2

Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses tsmscl.b
|- B = ( Base ` G )
tsmscl.1
|- ( ph -> G e. CMnd )
tsmscl.2
|- ( ph -> G e. TopSp )
tsmscl.a
|- ( ph -> A e. V )
tsmscl.f
|- ( ph -> F : A --> B )
haustsms.j
|- J = ( TopOpen ` G )
haustsms.h
|- ( ph -> J e. Haus )
Assertion haustsms2
|- ( ph -> ( X e. ( G tsums F ) -> ( G tsums F ) = { X } ) )

Proof

Step Hyp Ref Expression
1 tsmscl.b
 |-  B = ( Base ` G )
2 tsmscl.1
 |-  ( ph -> G e. CMnd )
3 tsmscl.2
 |-  ( ph -> G e. TopSp )
4 tsmscl.a
 |-  ( ph -> A e. V )
5 tsmscl.f
 |-  ( ph -> F : A --> B )
6 haustsms.j
 |-  J = ( TopOpen ` G )
7 haustsms.h
 |-  ( ph -> J e. Haus )
8 simpr
 |-  ( ( ph /\ X e. ( G tsums F ) ) -> X e. ( G tsums F ) )
9 1 2 3 4 5 6 7 haustsms
 |-  ( ph -> E* x x e. ( G tsums F ) )
10 9 adantr
 |-  ( ( ph /\ X e. ( G tsums F ) ) -> E* x x e. ( G tsums F ) )
11 eleq1
 |-  ( x = X -> ( x e. ( G tsums F ) <-> X e. ( G tsums F ) ) )
12 11 moi2
 |-  ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ ( x e. ( G tsums F ) /\ X e. ( G tsums F ) ) ) -> x = X )
13 12 ancom2s
 |-  ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ ( X e. ( G tsums F ) /\ x e. ( G tsums F ) ) ) -> x = X )
14 13 expr
 |-  ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x = X ) )
15 8 10 8 14 syl21anc
 |-  ( ( ph /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x = X ) )
16 velsn
 |-  ( x e. { X } <-> x = X )
17 15 16 syl6ibr
 |-  ( ( ph /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x e. { X } ) )
18 17 ssrdv
 |-  ( ( ph /\ X e. ( G tsums F ) ) -> ( G tsums F ) C_ { X } )
19 snssi
 |-  ( X e. ( G tsums F ) -> { X } C_ ( G tsums F ) )
20 19 adantl
 |-  ( ( ph /\ X e. ( G tsums F ) ) -> { X } C_ ( G tsums F ) )
21 18 20 eqssd
 |-  ( ( ph /\ X e. ( G tsums F ) ) -> ( G tsums F ) = { X } )
22 21 ex
 |-  ( ph -> ( X e. ( G tsums F ) -> ( G tsums F ) = { X } ) )