Metamath Proof Explorer


Theorem haustsms2

Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses tsmscl.b B=BaseG
tsmscl.1 φGCMnd
tsmscl.2 φGTopSp
tsmscl.a φAV
tsmscl.f φF:AB
haustsms.j J=TopOpenG
haustsms.h φJHaus
Assertion haustsms2 φXGtsumsFGtsumsF=X

Proof

Step Hyp Ref Expression
1 tsmscl.b B=BaseG
2 tsmscl.1 φGCMnd
3 tsmscl.2 φGTopSp
4 tsmscl.a φAV
5 tsmscl.f φF:AB
6 haustsms.j J=TopOpenG
7 haustsms.h φJHaus
8 simpr φXGtsumsFXGtsumsF
9 1 2 3 4 5 6 7 haustsms φ*xxGtsumsF
10 9 adantr φXGtsumsF*xxGtsumsF
11 eleq1 x=XxGtsumsFXGtsumsF
12 11 moi2 XGtsumsF*xxGtsumsFxGtsumsFXGtsumsFx=X
13 12 ancom2s XGtsumsF*xxGtsumsFXGtsumsFxGtsumsFx=X
14 13 expr XGtsumsF*xxGtsumsFXGtsumsFxGtsumsFx=X
15 8 10 8 14 syl21anc φXGtsumsFxGtsumsFx=X
16 velsn xXx=X
17 15 16 imbitrrdi φXGtsumsFxGtsumsFxX
18 17 ssrdv φXGtsumsFGtsumsFX
19 snssi XGtsumsFXGtsumsF
20 19 adantl φXGtsumsFXGtsumsF
21 18 20 eqssd φXGtsumsFGtsumsF=X
22 21 ex φXGtsumsFGtsumsF=X