Metamath Proof Explorer


Theorem elsnres

Description: Membership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011)

Ref Expression
Hypothesis elsnres.1
|- C e. _V
Assertion elsnres
|- ( A e. ( B |` { C } ) <-> E. y ( A = <. C , y >. /\ <. C , y >. e. B ) )

Proof

Step Hyp Ref Expression
1 elsnres.1
 |-  C e. _V
2 elres
 |-  ( A e. ( B |` { C } ) <-> E. x e. { C } E. y ( A = <. x , y >. /\ <. x , y >. e. B ) )
3 rexcom4
 |-  ( E. x e. { C } E. y ( A = <. x , y >. /\ <. x , y >. e. B ) <-> E. y E. x e. { C } ( A = <. x , y >. /\ <. x , y >. e. B ) )
4 opeq1
 |-  ( x = C -> <. x , y >. = <. C , y >. )
5 4 eqeq2d
 |-  ( x = C -> ( A = <. x , y >. <-> A = <. C , y >. ) )
6 4 eleq1d
 |-  ( x = C -> ( <. x , y >. e. B <-> <. C , y >. e. B ) )
7 5 6 anbi12d
 |-  ( x = C -> ( ( A = <. x , y >. /\ <. x , y >. e. B ) <-> ( A = <. C , y >. /\ <. C , y >. e. B ) ) )
8 1 7 rexsn
 |-  ( E. x e. { C } ( A = <. x , y >. /\ <. x , y >. e. B ) <-> ( A = <. C , y >. /\ <. C , y >. e. B ) )
9 8 exbii
 |-  ( E. y E. x e. { C } ( A = <. x , y >. /\ <. x , y >. e. B ) <-> E. y ( A = <. C , y >. /\ <. C , y >. e. B ) )
10 2 3 9 3bitri
 |-  ( A e. ( B |` { C } ) <-> E. y ( A = <. C , y >. /\ <. C , y >. e. B ) )