Step |
Hyp |
Ref |
Expression |
1 |
|
funrel |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → Rel 𝐹 ) |
3 |
|
suppssdm |
⊢ ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹 |
4 |
|
undif |
⊢ ( ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹 ↔ ( ( 𝐹 supp 𝑍 ) ∪ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) = dom 𝐹 ) |
5 |
4
|
biimpi |
⊢ ( ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹 → ( ( 𝐹 supp 𝑍 ) ∪ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) = dom 𝐹 ) |
6 |
5
|
eqcomd |
⊢ ( ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹 → dom 𝐹 = ( ( 𝐹 supp 𝑍 ) ∪ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) |
7 |
3 6
|
mp1i |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → dom 𝐹 = ( ( 𝐹 supp 𝑍 ) ∪ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) |
8 |
|
disjdif |
⊢ ( ( 𝐹 supp 𝑍 ) ∩ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) = ∅ |
9 |
8
|
a1i |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 supp 𝑍 ) ∩ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) = ∅ ) |
10 |
|
reldisjun |
⊢ ( ( Rel 𝐹 ∧ dom 𝐹 = ( ( 𝐹 supp 𝑍 ) ∪ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ∧ ( ( 𝐹 supp 𝑍 ) ∩ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) = ∅ ) → 𝐹 = ( ( 𝐹 ↾ ( 𝐹 supp 𝑍 ) ) ∪ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) ) |
11 |
2 7 9 10
|
syl3anc |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝐹 = ( ( 𝐹 ↾ ( 𝐹 supp 𝑍 ) ) ∪ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) ) |
12 |
11
|
difeq1d |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 ∖ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ( ( ( 𝐹 ↾ ( 𝐹 supp 𝑍 ) ) ∪ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) ∖ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) ) |
13 |
|
resss |
⊢ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ⊆ 𝐹 |
14 |
|
sseqin2 |
⊢ ( ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ⊆ 𝐹 ↔ ( 𝐹 ∩ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) |
15 |
13 14
|
mpbi |
⊢ ( 𝐹 ∩ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) |
16 |
|
suppiniseg |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) = ( ◡ 𝐹 “ { 𝑍 } ) ) |
17 |
16
|
reseq2d |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) = ( 𝐹 ↾ ( ◡ 𝐹 “ { 𝑍 } ) ) ) |
18 |
|
cnvrescnv |
⊢ ◡ ( ◡ 𝐹 ↾ { 𝑍 } ) = ( 𝐹 ∩ ( V × { 𝑍 } ) ) |
19 |
|
funcnvres2 |
⊢ ( Fun 𝐹 → ◡ ( ◡ 𝐹 ↾ { 𝑍 } ) = ( 𝐹 ↾ ( ◡ 𝐹 “ { 𝑍 } ) ) ) |
20 |
18 19
|
eqtr3id |
⊢ ( Fun 𝐹 → ( 𝐹 ∩ ( V × { 𝑍 } ) ) = ( 𝐹 ↾ ( ◡ 𝐹 “ { 𝑍 } ) ) ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 ∩ ( V × { 𝑍 } ) ) = ( 𝐹 ↾ ( ◡ 𝐹 “ { 𝑍 } ) ) ) |
22 |
17 21
|
eqtr4d |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) = ( 𝐹 ∩ ( V × { 𝑍 } ) ) ) |
23 |
15 22
|
syl5eq |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 ∩ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ( 𝐹 ∩ ( V × { 𝑍 } ) ) ) |
24 |
|
indifbi |
⊢ ( ( 𝐹 ∩ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ( 𝐹 ∩ ( V × { 𝑍 } ) ) ↔ ( 𝐹 ∖ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ( 𝐹 ∖ ( V × { 𝑍 } ) ) ) |
25 |
23 24
|
sylib |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 ∖ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ( 𝐹 ∖ ( V × { 𝑍 } ) ) ) |
26 |
8
|
reseq2i |
⊢ ( 𝐹 ↾ ( ( 𝐹 supp 𝑍 ) ∩ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ( 𝐹 ↾ ∅ ) |
27 |
|
resindi |
⊢ ( 𝐹 ↾ ( ( 𝐹 supp 𝑍 ) ∩ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ( ( 𝐹 ↾ ( 𝐹 supp 𝑍 ) ) ∩ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) |
28 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
29 |
26 27 28
|
3eqtr3i |
⊢ ( ( 𝐹 ↾ ( 𝐹 supp 𝑍 ) ) ∩ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ∅ |
30 |
|
undif5 |
⊢ ( ( ( 𝐹 ↾ ( 𝐹 supp 𝑍 ) ) ∩ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ∅ → ( ( ( 𝐹 ↾ ( 𝐹 supp 𝑍 ) ) ∪ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) ∖ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ( 𝐹 ↾ ( 𝐹 supp 𝑍 ) ) ) |
31 |
29 30
|
mp1i |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( ( 𝐹 ↾ ( 𝐹 supp 𝑍 ) ) ∪ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) ∖ ( 𝐹 ↾ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) ) = ( 𝐹 ↾ ( 𝐹 supp 𝑍 ) ) ) |
32 |
12 25 31
|
3eqtr3rd |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 ↾ ( 𝐹 supp 𝑍 ) ) = ( 𝐹 ∖ ( V × { 𝑍 } ) ) ) |