Description: Two ways to express equality relative to a class A . (Contributed by Thierry Arnoux, 23-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indifbi | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ 𝐶 ) ↔ ( 𝐴 ∖ 𝐵 ) = ( 𝐴 ∖ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 2 | inss1 | ⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 | |
| 3 | rcompleq | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ∧ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 ) → ( ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ 𝐶 ) ↔ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ ( 𝐴 ∩ 𝐶 ) ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ 𝐶 ) ↔ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ ( 𝐴 ∩ 𝐶 ) ) ) |
| 5 | difin | ⊢ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) | |
| 6 | difin | ⊢ ( 𝐴 ∖ ( 𝐴 ∩ 𝐶 ) ) = ( 𝐴 ∖ 𝐶 ) | |
| 7 | 5 6 | eqeq12i | ⊢ ( ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ ( 𝐴 ∩ 𝐶 ) ) ↔ ( 𝐴 ∖ 𝐵 ) = ( 𝐴 ∖ 𝐶 ) ) |
| 8 | 4 7 | bitri | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ 𝐶 ) ↔ ( 𝐴 ∖ 𝐵 ) = ( 𝐴 ∖ 𝐶 ) ) |