Metamath Proof Explorer


Theorem indifbi

Description: Two ways to express equality relative to a class A . (Contributed by Thierry Arnoux, 23-Jun-2024)

Ref Expression
Assertion indifbi AB=ACAB=AC

Proof

Step Hyp Ref Expression
1 inss1 ABA
2 inss1 ACA
3 rcompleq ABAACAAB=ACAAB=AAC
4 1 2 3 mp2an AB=ACAAB=AAC
5 difin AAB=AB
6 difin AAC=AC
7 5 6 eqeq12i AAB=AACAB=AC
8 4 7 bitri AB=ACAB=AC