Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
General Set Theory
Set relations and operations - misc additions
diffib
Next ⟩
difxp1ss
Metamath Proof Explorer
Ascii
Unicode
Theorem
diffib
Description:
Case where
diffi
is a biconditional.
(Contributed by
Thierry Arnoux
, 27-Jun-2024)
Ref
Expression
Assertion
diffib
⊢
B
∈
Fin
→
A
∈
Fin
↔
A
∖
B
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
diffi
⊢
A
∈
Fin
→
A
∖
B
∈
Fin
2
1
adantl
⊢
B
∈
Fin
∧
A
∈
Fin
→
A
∖
B
∈
Fin
3
difinf
⊢
¬
A
∈
Fin
∧
B
∈
Fin
→
¬
A
∖
B
∈
Fin
4
3
ancoms
⊢
B
∈
Fin
∧
¬
A
∈
Fin
→
¬
A
∖
B
∈
Fin
5
4
ex
⊢
B
∈
Fin
→
¬
A
∈
Fin
→
¬
A
∖
B
∈
Fin
6
5
con4d
⊢
B
∈
Fin
→
A
∖
B
∈
Fin
→
A
∈
Fin
7
6
imp
⊢
B
∈
Fin
∧
A
∖
B
∈
Fin
→
A
∈
Fin
8
2
7
impbida
⊢
B
∈
Fin
→
A
∈
Fin
↔
A
∖
B
∈
Fin