Metamath Proof Explorer


Theorem suppiniseg

Description: Relation between the support ( F supp Z ) and the initial segment (`' F " { Z } ) ` . (Contributed by Thierry Arnoux, 25-Jun-2024)

Ref Expression
Assertion suppiniseg ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) → ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) = ( 𝐹 “ { 𝑍 } ) )

Proof

Step Hyp Ref Expression
1 eldif ( 𝑥 ∈ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) )
2 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
3 2 biimpi ( Fun 𝐹𝐹 Fn dom 𝐹 )
4 elsuppfng ( ( 𝐹 Fn dom 𝐹𝐹𝑉𝑍𝑊 ) → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ≠ 𝑍 ) ) )
5 3 4 syl3an1 ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ≠ 𝑍 ) ) )
6 5 baibd ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝐹𝑥 ) ≠ 𝑍 ) )
7 6 notbid ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ¬ ( 𝐹𝑥 ) ≠ 𝑍 ) )
8 nne ( ¬ ( 𝐹𝑥 ) ≠ 𝑍 ↔ ( 𝐹𝑥 ) = 𝑍 )
9 7 8 bitrdi ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝐹𝑥 ) = 𝑍 ) )
10 fvex ( 𝐹𝑥 ) ∈ V
11 10 elsn ( ( 𝐹𝑥 ) ∈ { 𝑍 } ↔ ( 𝐹𝑥 ) = 𝑍 )
12 9 11 bitr4di ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝐹𝑥 ) ∈ { 𝑍 } ) )
13 12 pm5.32da ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) → ( ( 𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ { 𝑍 } ) ) )
14 1 13 syl5bb ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) → ( 𝑥 ∈ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ { 𝑍 } ) ) )
15 3 3ad2ant1 ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) → 𝐹 Fn dom 𝐹 )
16 elpreima ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( 𝐹 “ { 𝑍 } ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ { 𝑍 } ) ) )
17 15 16 syl ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) → ( 𝑥 ∈ ( 𝐹 “ { 𝑍 } ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ { 𝑍 } ) ) )
18 14 17 bitr4d ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) → ( 𝑥 ∈ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ↔ 𝑥 ∈ ( 𝐹 “ { 𝑍 } ) ) )
19 18 eqrdv ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) → ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) = ( 𝐹 “ { 𝑍 } ) )