Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) ) |
2 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
3 |
2
|
biimpi |
⊢ ( Fun 𝐹 → 𝐹 Fn dom 𝐹 ) |
4 |
|
elsuppfng |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) ) |
5 |
3 4
|
syl3an1 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) ) |
6 |
5
|
baibd |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) |
7 |
6
|
notbid |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) |
8 |
|
nne |
⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
9 |
7 8
|
bitrdi |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
10 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
11 |
10
|
elsn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝑍 } ↔ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
12 |
9 11
|
bitr4di |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ { 𝑍 } ) ) |
13 |
12
|
pm5.32da |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 𝑍 } ) ) ) |
14 |
1 13
|
syl5bb |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑥 ∈ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 𝑍 } ) ) ) |
15 |
3
|
3ad2ant1 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝐹 Fn dom 𝐹 ) |
16 |
|
elpreima |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑍 } ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 𝑍 } ) ) ) |
17 |
15 16
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑍 } ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 𝑍 } ) ) ) |
18 |
14 17
|
bitr4d |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑥 ∈ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ↔ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑍 } ) ) ) |
19 |
18
|
eqrdv |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) = ( ◡ 𝐹 “ { 𝑍 } ) ) |