| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdifsuppconst.1 |
⊢ 𝐴 = ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) |
| 2 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
| 3 |
2
|
biimpi |
⊢ ( Fun 𝐹 → 𝐹 Fn dom 𝐹 ) |
| 4 |
3
|
ad2antrr |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) → 𝐹 Fn dom 𝐹 ) |
| 5 |
|
difssd |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) → ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ⊆ dom 𝐹 ) |
| 6 |
1 5
|
eqsstrid |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) → 𝐴 ⊆ dom 𝐹 ) |
| 7 |
4 6
|
fnssresd |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
| 8 |
|
fnconstg |
⊢ ( 𝑍 ∈ 𝑊 → ( 𝐴 × { 𝑍 } ) Fn 𝐴 ) |
| 9 |
8
|
adantl |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) → ( 𝐴 × { 𝑍 } ) Fn 𝐴 ) |
| 10 |
4
|
adantr |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 Fn dom 𝐹 ) |
| 11 |
|
dmexg |
⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) |
| 12 |
11
|
ad3antlr |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐴 ) → dom 𝐹 ∈ V ) |
| 13 |
|
simplr |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑍 ∈ 𝑊 ) |
| 14 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) |
| 15 |
14
|
biimpi |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( dom 𝐹 ∖ ( 𝐹 supp 𝑍 ) ) ) |
| 17 |
10 12 13 16
|
fvdifsupp |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
| 18 |
|
simpr |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 19 |
18
|
fvresd |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 20 |
|
fvconst2g |
⊢ ( ( 𝑍 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 𝑍 } ) ‘ 𝑥 ) = 𝑍 ) |
| 21 |
20
|
adantll |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 𝑍 } ) ‘ 𝑥 ) = 𝑍 ) |
| 22 |
17 19 21
|
3eqtr4d |
⊢ ( ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) = ( ( 𝐴 × { 𝑍 } ) ‘ 𝑥 ) ) |
| 23 |
7 9 22
|
eqfnfvd |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 ↾ 𝐴 ) = ( 𝐴 × { 𝑍 } ) ) |
| 24 |
23
|
3impa |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 ↾ 𝐴 ) = ( 𝐴 × { 𝑍 } ) ) |